

Formal Semantics
as a Language Designer's

Toolbox

Paolo G. Giarrusso · Klaus Ostermann · Tillmann Rendel
University of Marburg · University of Tübingen

Eric Walkingshaw
University of Marburg · Oregon State University

Presentation by Tillmann Rendel
at the Second International Workshop
on Domain-Specific Language Design and Implementation
in Portland, Oregon, October 20, 2014

The great work
of this community makes

Language
Implementation

easier and easier

so more and more

programmers
build their own custom

DSL

and become

programmers
and

language designers
at the same time

Language
Design

is still

HARD

How can a

programmer/
language designer

learn to design languages that are

elegant and usable?

Formal Semantics

● Semanticists know a lot about languages
(it's their job)

● Semanticists know a lot about elegance
(they are mathematicians)

● Mathematical elegance has pragmatic advantages

Elegant = powerful and simple, less to learn

Can formal semantics guide a
programmer/language designer

towards an elegant and usable design?

Problem 1

● Problem: Formal semantics is a lot of work.
● Proposed Solution: Don't actually formalize the

semantics, just let the insights of formal
semantics guide your design process.

Problem 2

● Problem: The language of the semanticists is not
understandable to the working
programmer/language designers

● Proposed Solution: Package the insights from
formal semantics as language design patterns.

Language Design Patterns

● Patterns work for software design,
we want to adapt them for language design

● Use terms that make sense to the working
programmer/language designer

● Not in scope: language implementation patterns
● Not in scope: designing perfect languages
● In scope: language design patterns for reasonably

elegant, usable languages.

Bound & Binding Occurrences

How to structure names?

Distinguish bound and binding
occurrences of names. Each bound
occurrences refers to a binding
occurrence.

You can reason about the naming
structure of a program in terms of
„this name here is bound there“

 name

 problem

 solution

 effects

Bound & Binding Occurrences

How to structure names?

Distinguish bound and binding
occurrences of names. Each bound
occurrences refers to a binding
occurrence.

You can reason about the naming
structure of a program in terms of
„this name here is bound there“

 name

 problem

 solution

 effects

Lexical Scoping

Which bound occurrence refers to
which binding occurrence?

All bound occurrences in a
continuous region of the source file
bind to the same binding
occurrence.

You can reason about the binding
structure statically.

 name

 problem

 solution

 effects

Bound & Binding Occurrences

How to structure names?

Distinguish bound and binding
occurrences of names. Each bound
occurrences refers to a binding
occurrence.

You can reason about the naming
structure of a program in terms of
„this name here is bound there“

 name

 problem

 solution

 effects

Lexical Scoping

Which bound occurrence refers to
which binding occurrence?

All bound occurrences in a
continuous region of the source file
bind to the same binding
occurrence.

You can reason about the binding
structure statically.

 name

 problem

 solution

 effects

Domain-Specific Scoping

Which bound occurrence refers to
which binding occurrence?

Use domain-specific criteria to
match bound to binding
occurrences.

Your binding structure supports
your domain integration.

 name

 problem

 solution

 effects

Meaning

How to specify the semantics?

Map every program to its meaning.

Allows to identify programs that
mean the same but work
differently internally.

 name

 problem

 solution

 effects

Meaning

How to specify the semantics?

Map every program to its meaning.

Allows to identify programs that
mean the same but work
differently internally.

 name

 problem

 solution

 effects

Simple Meaning

How to structure the meaning?

Choose the simplest thing that
works.

Carefully choosing the meaning
helps you focus your design on
your domain.

 name

 problem

 solution

 effects

Meaning

How to specify the semantics?

Map every program to its meaning.

Allows to identify programs that
mean the same but work
differently internally.

 name

 problem

 solution

 effects

Simple Meaning

How to structure the meaning?

Choose the simplest thing that
works.

Carefully choosing the meaning
helps you focus your design on
your domain.

 name

 problem

 solution

 effects

Recursive Meaning

How to define the meaning
mapping?

Map each phrase of the program to
its meaning.

You can explain what a part of a
program means.

 name

 problem

 solution

 effects

Meaning

How to specify the semantics?

Map every program to its meaning.

Allows to identify programs that
mean the same but work
differently internally.

 name

 problem

 solution

 effects

Simple Meaning

How to structure the meaning?

Choose the simplest thing that
works.

Carefully choosing the meaning
helps you focus your design on
your domain.

 name

 problem

 solution

 effects

Recursive Meaning

How to define the meaning
mapping?

Map each phrase of the program to
its meaning.

You can explain what a part of a
program means.

 name

 problem

 solution

 effects

Compositional Meaning

How to define the meaning
mapping?

Define the meaning of a phrase in
terms of the meaning of its
subphrases.

The meaning of a phrase is the
phrase's interface. Allow code
moving without changing meaning.

 name

 problem

 solution

 effects

Type Structure

How to structure the primitives?

Structure your language design
around the available types of
values. Think of the primitives as
the interfaces of the types.

Easier to not forget primitives.
Structuring principle also for
documentation.

 name

 problem

 solution

 effects

Type Structure

How to structure the primitives?

Structure your language design
around the available types of
values. Think of the primitives as
the interfaces of the types.

Easier to not forget primitives.
Structuring principle also for
documentation.

 name

 problem

 solution

 effects

Constructor

Which operations for a type?

Provide constructors for making
new values of a type.

User programs can create values of
the type.

 name

 problem

 solution

 effects

Type Structure

How to structure the primitives?

Structure your language design
around the available types of
values. Think of the primitives as
the interfaces of the types.

Easier to not forget primitives.
Structuring principle also for
documentation.

 name

 problem

 solution

 effects

Constructor

Which operations for a type?

Provide constructors for making
new values of a type.

User programs can create values of
the type.

 name

 problem

 solution

 effects

Destructor

Which operations for a type?

Provide destructors for getting
information out of values of a type.

User programs can use values of
the type.

 name

 problem

 solution

 effects

Type Structure

How to structure the primitives?

Structure your language design
around the available types of
values. Think of the primitives as
the interfaces of the types.

Easier to not forget primitives.
Structuring principle also for
documentation.

 name

 problem

 solution

 effects

Constructor

Which operations for a type?

Provide constructors for making
new values of a type.

User programs can create values of
the type.

 name

 problem

 solution

 effects

Destructor

Which operations for a type?

Provide destructors for getting
information out of values of a type.

User programs can use values of
the type.

 name

 problem

 solution

 effects

Information Preservation

How to balance constructors and
destructors?

Provide enough destructors to get
all information out of an
constructed value.
Provide enough constructors to
recreate a destructed value.

No identity and no secrets.

 Name

 problem

 solution

 effects

Language Design Patterns ...

● guide the design process
(„think of all constructors“)

● structure the design
(„separate constructors and destructors“)

● highlight design choices
(„which kind of scoping is appropriate?“)

● explain effects („user programs can ...“)
● interact („if a compositional meaning is a phrase's

interface, a simple meaning is a better interface“)

Conclusion

● We can try to phrase insights from formal
semantics as language design patterns

● The language design patterns should use terms
that make sense to the working
programmer/language designer

● Future Work:
Collect language design patterns and
distill them into a coherent pattern language.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

