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Abstract
Static types are a great form of lightweight static analysis.

But sometimes a type like List is too coarse – we would

also like to work with its refinements like non-empty lists,

or lists containing exactly 42 elements. Dependent types

allow for this, but they impose a heavy proof burden on

the programmer. We want the checking and inference of

refinements to be fully automatic.

In this article we present a simple refinement type system

and inference algorithm which uses only variants of familiar

concepts from constraint-based type inference. Concretely,

we build on the algebraic subtyping approach and extend it

with typing rules which combine properties of nominal and

structural type systems in a novel way. Despite the simplicity

of our approach, the resulting type system is very expres-

sive and allows to specify and infer non-trivial properties of

programs.
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1 Introduction
Consider the following simple predecessor function on Peano

numbers:

def pred ≔ 𝜆𝑥.case 𝑥 of {𝑆 (𝑛) ⇒ 𝑛}
According to most type systems and implementations,

this function is partial. How programming languages handle

this partiality may differ; some implementations will crash

at runtime while others generate a warning or an error at

compile-time. But there is another alternative: This function

is a perfectly well-behaved total function on the domain

of non-zero Peano numbers. Expressing and inferring such

refinements of data types is the subject of this article.
We are certainly not the first to have made this obser-

vation. More fine-grained types of this sort are commonly

known as refinement types [6]. In distinction to dependent

types, which can express almost arbitrary subsets of types,

refinement types are much more lightweight. A heavy em-

phasis on automation makes it so that little to no additional

annotations are required by the programmer to benefit from

their expressiveness.

As soon as we introduce refinement types into a type sys-

tem, some notion of subtyping comes into play: If a function

expects a number as an argument, it is clearly also valid to

pass a subtype such as a non-zero number. So we need sub-

typing, but the design of a global type inference algorithm

with nice properties such as principal types for a systemwith

both subtyping and parametric polymorphism is known to

be a hairy problem. Luckily for us, we don’t have to solve

this problem ourselves, since Dolan and Mycroft [3, 4] as

well as Parreaux [14] have already done so for us. The alge-
braic subtyping approach they have developed can be used

as a blueprint to design a type system which fulfills the de-

sired properties, similar to how the basic Hindley-Milner

algorithm can be used as a blueprint for further type system

extensions.

While experimenting with an implementation of the al-

gebraic subtyping type inference algorithm, we made the

following discovery, which we present as our central contri-

bution in this paper: We implemented both ordinary nominal

algebraic data types, as well as purely structural data types

in the form of polymorphic variants [7]. We then realized
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that if we combine the typing rules for polymorphic vari-

ants with the typing rules for nominal data types, we get a

form of refinement types for free! Before we go into further

detail, let us briefly review the spectrum of nominal and

structural type systems, one of the principal ways in which

type systems can be classified.

A nominal type system can be recognized by the pres-

ence of a sublanguage for specifying types and the relation-

ships between them. In inheritance-based, object-oriented

languages, for example, this sublanguage is used to spec-

ify classes and their subtyping relationships, while in data-

oriented languages, it is used to specify a wide variety of

algebraic data types, such as enums and structs. By contrast,

structural type systems consider the structure of types to
reason about type compatibility. In systems for structural

records and polymorphic variants [7, 8], for example, the

types reflect which fields are present in records, or which

variants may be present in a sum type. Nominal subtyping

can be seen as a subset of structural subtyping in which a

nominal subtyping declaration must be present in addition

to a structural subtyping relation, which on one hand facili-

tates unplanned extensibility but on the other hand leads to

undesirable subtype relationships [13].

In practice, a lot of systems combine nominal and struc-

tural aspects within the same system. To illustrate this, con-

sider the following examples:

{ 𝑎 = 2, 𝑏 = True } : { 𝑎 : N, 𝑏 : B }
‵IoError(5) : ⟨ ‵IoError(N) ⟩

In the first line, both fields 𝑎 and 𝑏 are reflected in the struc-

tural record type. The fields themselves, on the other hand,

are typed using nominal types N and B. The second example

illustrates the use of polymorphic variants (or structural sum

types), using syntax inspired by OCaml. The constructor

‵IoError is not part of some algebraic data type declared

elsewhere in the program or the standard library. It is intro-

duced in this term, so its name and argument type is reflected

in the inferred type ⟨ ‵IoError(N) ⟩.
The combination of such structural variants and records

with equi-recursive types is surprisingly expressive. Equi-re-

cursive types have the form 𝜇𝛼.𝜏 and are for typechecking

purposes indistinguishable from their unfolding 𝜏 [𝜇𝛼.𝜏/𝛼]1.
As an example for this expressivity, consider the following

function:

def isEven ≔ 𝜆𝑥 .case 𝑥 of {‵Z ⇒ True;
‵S(𝑥) ⇒ not(isEven(𝑥))}

In a system which can infer equi-recursive types, this func-

tion has the inferred type 𝜇𝛼.⟨ ‵Z, ‵S(𝛼) ⟩ → B. This type
correctly reflects both the constructors matched against and

1
This distinguishes equi-recursive types from iso-recursive types, where the

isomorphism between 𝜇𝛼.𝜏 and 𝜏 [𝜇𝛼.𝜏/𝛼 ] has to be made explicit using

folding and unfolding functions.

the recursive nature of the function. But while this type is

hardly more informative than the typeN→ B, the following
example shows how structural types in combination with

equi-recursive types can give more information than the

corresponding nominal types can. Consider the following

function which doubles its argument:

def double ≔ 𝜆𝑥 .case 𝑥 of {‵Z ⇒ ‵Z;
‵S(𝑥) ⇒ ‵S(‵S(double(𝑥))}

The inferred type of this function is 𝜇𝛼.⟨ ‵Z | ‵S(𝛼) ⟩ →
𝜇𝛽.⟨ ‵Z | ‵S(‵S(𝛽)) ⟩. This type reveals that the function

only returns even numbers!

But, alas, not everything is fine with these structural types.

Consider the predecessor function which we used as our first

example, but this time with a polymorphic variant:

def pred ≔ 𝜆𝑥 .case 𝑥 of {‵S(𝑛) ⇒ 𝑛}
Its inferred type scheme is the rather surprisingly polymor-

phic ∀𝛼. ⟨ ‵S(𝛼) ⟩ → 𝛼 . This type states that the predecessor

function can be applied to any typeable term as long as it is

wrapped in the successor constructor, even such nonsensical

terms as
‵S(True). Under the typing rules of a structural

system this is correct and doesn’t violate the soundness of

the type theory. But it is clearly confusing for a programmer

who expects that the application of the successor constructor

to a boolean should result in a type error.

Themain idea presented in this paper is that if we combine

the ordinary typing rules for data types with the typing rules

for polymorphic variants, we obtain an interesting refine-

ment type system. We call these types structural refinement
types. In this system, structural types are used as the refine-

ments of nominal types which are declared by the user. For

instance, given the nominal type N of Peano numbers, we

can use various structural refinement types, such as

all natural numbers : 𝜇𝛼.⟨ N | 𝑍, 𝑆 (𝛼) ⟩
non-zero numbers : ⟨ N | 𝑆 (𝜇𝛼.⟨ N | 𝑍, 𝑆 (𝛼) ⟩) ⟩

even numbers : 𝜇𝛼.⟨ N | 𝑍, 𝑆 (⟨ N | 𝑆 (𝑎) ⟩) ⟩

With these refinement types, the predecessor function can be

typed with ⟨N | 𝑆 (𝜇𝛼.⟨N | 𝑍, 𝑆 (𝛼) ⟩) ⟩ → 𝜇𝛼.⟨N | 𝑍, 𝑆 (𝛼) ⟩2.
That is, the function expects a non-zero number as an argu-

ment and returns some natural number.

Existing approaches to refinement types support extensive

automation, but they make various trade-offs. In the original

system of Freeman and Pfenning [6], the programmer was

required to manually specify all refinements they want to

use.We only require the user to specify the original data type,

but not its refinements, which are discovered automatically.

With liquid refinement types [18, 19], an external solver is

2
There are many ways in which the presentation of these refinement types

can be improved when shown to the user. We use a presentation which is

close to the form used in the formalization.
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used to solve the proof obligations for the programmer. By

contrast, we use only familiar techniques from constraint-

based type inference. The system of Jones and Ramsay [12] is

very similar in spirit to our system, but the refinements they

allow are less expressive. They support refinements which

can be expressed as the removal of constructors from the def-

inition of a type, but require these removals to be hereditary.

As such, they cannot express the type of non-empty lists,

which requires the removal of the Nil constructor only at

the top level. Our system lifts this limitation, supporting all

refinements that can be expressed as a regular sublanguage

of the original type.

The rest of this paper is structured as follows:

• In Section 2 we present our central ideas using a sim-

plified version of our type system.

• In Section 3 we present the full declarative type system

with user defined and parameterized data types.

• In Section 4 we present the type inference algorithm,

and the algorithms used to simplify types. The type

inference algorithm uses a variant of the biunification

algorithm introduced by Dolan and Mycroft [3, 4] with

some modifications inspired by Parreaux [14]. Type

simplification is achieved by encoding types in finite

automata and using familiar simplification techniques

from automata theory.

• We discuss related work in Section 5, future work in

Section 6 and conclude in Section 7.

2 The Main Idea
Our main idea is to build upon the algebraic subtyping ap-

proach [3, 4, 14] and to extend it with types which combine

the typing rules for nominal and structural types. In Sec-

tion 3 and Section 4 we will present these rules with all the

gory details. Since we show how to implement structural

refinement types for arbitrary user-defined data types, the

resulting rules are quite complex. In order to make them

more palatable, we specialize the rules in this section to two

examples: Peano numbers and lists. In Section 2.1 we show

how to work with refinements of Peano numbers, since they

are the simplest example involving recursive types. We show

how to deal with refinements of lists in Section 2.2. Parame-

terized types like lists pose an interesting design question.

Should we compute refinements of the spine of the list and

its elements separately, or together? We chose to refine them

separately, and motivate that choice in that subsection.

2.1 Peano Numbers
Natural numbers N can be represented by a data type with

two constructors: zero (𝑍 ) and successor (𝑆). The typing rules

for the constructors and the pattern match are familiar:

ZNominalΓ ⊢ 𝑍 : N
Γ ⊢ 𝑒 : N

SNominal
Γ ⊢ 𝑆 (𝑒) : N

Γ ⊢ 𝑒 : N Γ ⊢ 𝑒𝑍 : 𝜏 Γ, 𝑥 : N ⊢ 𝑒𝑆 : 𝜏
Case

N
NominalΓ ⊢ case 𝑒 of {𝑍 ⇒ 𝑒𝑍 , 𝑆 (𝑥) ⇒ 𝑒𝑆 } : 𝜏

Nothing about these rules is surprising. But note that even

in these very simple rules one of the essential characteristics

of all static analyses is already present. The types that we

use are a conservative approximation, as the single type N
is used for all natural numbers.

In contrast to this, let us consider what would happen if

we used polymorphic variants [7, 8] for natural numbers.

The typing rule for zero and the successor would then be the

following:

ZStructural
Γ ⊢ ‵Z : ⟨ ‵Z ⟩

Γ ⊢ 𝑒 : 𝜎
SStructural

Γ ⊢ ‵S(𝑒) : ⟨ ‵S(𝜎) ⟩
If we compare them to the previous rules, we can make

the following observations: The inferred type ⟨ ‵Z ⟩ for
zero is much more informative, it is even specific enough to

deduce the only possible inhabitant, namely the number 0!

And the same holds true for the rule for the successor; from

the type in the conclusion of the rule we can deduce that the

outermost constructor must be
‵S. But the rule SStructural is

also somewhat disappointing: It does not impose any restric-

tion on the type of the term that
‵S is applied to. This is why

a term like
‵S(True) is typeable with this rule.

Similar to how the typing rules for constructors reflect

the constructor used to construct the term in the type, the

rule for pattern matches reflects the constructors which are

matched against. For example, a pattern match which only

matches against the constructor
‵S is typed as follows:

Γ ⊢ 𝑒 : ⟨ ‵S(𝜏) ⟩ Γ, 𝑥 : 𝜏 ⊢ 𝑒𝑆 : 𝜌
Case

𝑆
StructuralΓ ⊢ case 𝑒 of {‵S(𝑥) ⇒ 𝑒𝑆 } : 𝜌

In this rule we don’t require 𝑒 to be a natural number. We

only place the minimal requirement on the type 𝑒 , namely

to be wrapped with the constructor
‵S.

So what is the result when we combine the nominal and

structural rules above? In our system, the typing rules for

zero and the successor look as follows:

ZRefinement
Γ ⊢ 𝑍 : ⟨ N | 𝑍 ⟩

Γ ⊢ 𝑒 : 𝜎 𝜎 <: 𝜇𝛼.⟨ N | 𝑍, 𝑆 (𝛼) ⟩
SRefinement

Γ ⊢ 𝑆 (𝑒) : ⟨ N | 𝑆 (𝜎) ⟩

In the typing rule SRefinement we have combined the prop-

erties of both systems. In the conclusion of the rule, we can

still deduce from the type ⟨N | 𝑆 (𝜎) ⟩ which constructor was
used to build the term. And in the second premise we still put

a constraint on the permissible arguments of 𝑆 , namely that

the argument to 𝑆 must be some subtype of the Peano natural

numbers, i.e. a refinement of N. The situation is similar in

the case of pattern matches:
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⟨ N | ∅ ⟩ <: 𝜏 <: 𝜇𝛼.⟨ N | 𝑍, 𝑆 (𝛼) ⟩
Γ ⊢ 𝑒 : ⟨ N | 𝑆 (𝜏) ⟩
Γ, 𝑥 : 𝜏 ⊢ 𝑒𝑆 : 𝜌

Case
𝑆
RefinementΓ ⊢ case 𝑒 of {𝑆 (𝑥) ⇒ 𝑒𝑆 } : 𝜌

We require the term 𝑒 to be of type ⟨ N | 𝑆 (𝜏) ⟩, since we
only match against the successor constructor. But we also

require the argument of 𝑆 to be some natural number, which

we express here with a lower and an upper bound on 𝜏 . We

might learn more about the requirements that 𝜏 must satisfy

in the body 𝑒𝑆 , for example that 𝜏 must be non-zero, too.

2.2 Lists
In the previous section we used the example of natural num-

bers, whose definition in the formal syntax of Section 3 will

look like this:

data Nat : (; ) → ∗ { 𝑍 () : Nat(; ), 𝑆 (rec@(; )) : Nat(; ) }

After the name of the type constructor Nat we have to specify

its kind. Since natural numbers are not parameterized, the

kind is simply (; ) → ∗, which is isomorphic to the kind ∗ of
inhabited types. The recursive occurrence in the argument

of the constructor 𝑆 is written using the special rec symbol,

which has to be applied to zero type arguments, using the

syntax rec@(; ). This syntax makes more sense once we see

the definition of a parameterized type. The type of lists of

some element type 𝛼 is defined as follows:

data List : (∗; ) → ∗ {
∀𝛼.Nil() : List(𝛼 ; ),
∀𝛼.Cons(𝛼, rec@(𝛼 ; )) : List(𝛼 ; ) }

This definition introduces the type constructor List of kind
(∗; ) → ∗. In the algebraic subtyping system we have to keep

covariant and contravariant parameters of a type strictly sep-

arate. The element type of a list is a covariant argument, and

covariant arguments are written to the left of the semicolon

in the kind of List.
There is one central design question concerning parame-

terized types like lists. The problem can be illustrated with

the list Cons(True, Cons(False, Nil)). What should be the

type of this list? As we see it, there are two possible choices:

1. We infer the refinement as if the programmer had

written a data type declaration of lists of booleans.

We call this the monomorphising approach. With this

approach, we infer the type of a two-element list which

contains the term True at the first position and the

term False at the second position.

2. We infer separate refinements for the spine of the list

and the elements of the list. Using this approach, we

infer the type of a two element list (that is, a refinement

on lists) whose elements are among the set containing

both True and False (that is, a refinement of booleans).

On a technical level, this corresponds to introducing

a single unification variable for all of the elements of

the list.

The types that are inferred using the first approach are more

precise, but this precision comes at a cost. Type inference

has to keep track of a lot more information, making it much

harder to scale to realistic programs. Secondly, the inferred

types are much harder to decipher for the user, and the

approach is overall less modular. For these reasons we have

decided to specify and implement the second approach.

An example for functions on lists can be found in Figure 1.

Note that all type annotations in Figure 1 are not necessary,

but they are checked can be used as documentation. The

mapNonEmpty function operates on the type NonEmpty of

non-empty lists, which is a subtype of the type FullList
of list of arbitrary length. This illustrates how we can keep

reasoning about the shape of the list separate from reason-

ing about the lists contents: mapNonEmpty keeps track of the

shape and allows us to recover the shape of the input in the

output, while at the same time remaining parametric over

the types of the elements of the lists involved. This allows us

to use its output as an input to the max function. At the same

time, we would still be able to use its output in any para-

metric function on lists like a listLength function since

NonEmpty is a subtype of FullList.

2.3 The Expressivity of Structural Refinement Types
How expressive are the structural refinement types that we

present here? In their paper, Freeman and Pfenning [6] al-

ready made the observation that they can only express re-

finements that correspond to a regular sublanguage of the

original type, and we have the same restriction in our system.

For example, it is possible to express the refinement type of

even natural numbers, but it is not possible to express the

refinement type of natural numbers that are prime.

This restriction of the expressive power is essential in

several different respects. The favorable closure properties

of regular languages are crucial when we compute and sim-

plify unions and intersections of refinement types. The close

correspondence between types and finite automata, which

explains the restriction to regular sublanguages, is also the

basis of the simplification algorithms described by Dolan [3],

which we modify for our purposes in Section 4.4.

3 Formalization
In this section we describe the declarative type system; the

type inference algorithm will then be described in Section 4.

We introduce terms in Section 3.1, kinds in Section 3.2 and

most types in Section 3.3. We introduce the syntax and rules

of structural refinement types in Section 3.4. We use the

notation 𝑒 to denote a (possibly empty) list of elements 𝑒 ,

following the conventions of Igarashi et al. [10].
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data List : (∗; ) → ∗ {
∀𝛼.Nil() : List(𝛼 ; ),
∀𝛼.Cons(𝛼, rec@(𝛼 ; )) : List(𝛼 ; ) }

type FullList : (∗; ) → ∗ ≔
𝜇𝛿.⟨ List(𝛾 ; ) | Nil, Cons(𝛾, 𝛿) ⟩

map : (𝛼 → 𝛽) →
FullList@(𝛼 ; ) → FullList@(𝛽 ; )

map ≔ 𝜆𝑓 𝑥𝑠. case 𝑥𝑠 of {
Nil ⇒ Nil;
Cons(𝑦,𝑦𝑠) ⇒ Cons(𝑓 𝑦, map 𝑓 𝑦𝑠)}

type NonEmpty : (∗; ) → ∗ ≔
⟨ List(𝛼 ; ) | Cons(𝛼, FullList@(𝛼 ; )) ⟩

mapNonEmpty : (𝛼 → 𝛽) →
NonEmpty@(𝛼 ; ) → NonEmpty@(𝛽 ; )

mapNonEmpty ≔ 𝜆𝑓 𝑥𝑠. case 𝑥𝑠 of {
Cons(𝑦,𝑦𝑠) ⇒ Cons(𝑓 𝑦, map 𝑓 𝑦𝑠)}

max : NonEmpty@(N; ) → N
max ≔ 𝜆𝑛𝑠. case 𝑛𝑠 of {

Cons(𝑚,𝑚𝑠) ⇒ case𝑚𝑠 of {
Nil ⇒𝑚

Cons(𝑜, 𝑜𝑠) ⇒ case (max Cons(𝑜, 𝑜𝑠)) ≤ 𝑚 of {
True ⇒𝑚

False ⇒ max Cons(𝑜, 𝑜𝑠)}}}
maxLength : NonEmpty@(String; ) → N
maxLength ≔ 𝜆𝑠𝑠. max (mapNonEmpty length 𝑠𝑠)

Figure 1.Mapping on non-empty lists. The type annotations

are for documentation purposes; principal types can always

be inferred.

3.1 Terms
The term system, presented in Figure 2, is entirely standard

for a language with functions and data types. Terms 𝑒 can

be variables 𝑥 , which are taken from the set of term vari-

ables Var. The two syntactic forms for functions are lambda

abstractions 𝜆𝑥.𝑒 and function applications 𝑒 𝑒 . Elements of

an algebraic data type can be constructed with constructors

applied to arguments C(𝑒), where the names of constructors

are from the set CtorName. In order to deconstruct an el-

ement of an algebraic data type one uses a pattern match

case 𝑒 of {C(𝑥) ⇒ 𝑒}.
We do not specify any operational semantics for the terms

of Figure 2. The type theory we present is equally suitable

for both strict and non-strict evaluation orders.

𝑥,𝑦 ∈ Var C ∈ CtorName

𝑒, 𝑒𝑖 F 𝑥 | 𝜆𝑥 .𝑒 | 𝑒 𝑒

| C(𝑒) | case 𝑒 of { C(𝑥) ⇒ 𝑒 }

Figure 2. The syntax of terms.

3.2 Kinds
We formalize a system with higher kinds whose syntax is

given in Figure 3.

The kind ∗ classifies inhabited types. Higher kinds have

the form (𝜅;𝜅 ′) → ∗. They have two lists of arguments 𝜅

and 𝜅 ′
and always return the kind ∗. The two argument lists

are needed to keep track of variance; the first list stands for

covariant arguments and the second list stands for contravari-

ant arguments. As an example, the list type constructor has

kind (∗; ) → ∗, taking one covariant argument of kind ∗ and
no contravariant arguments.

𝜅 F ∗ | (𝜅;𝜅) → ∗ Kinds

Figure 3. The syntax of kinds.

3.3 Types
We will first discuss the types of the core system, which

are given in Figure 4. Type variables are taken from a set

TyVar and occur as both skolem variables 𝛼 and unification

variables 𝛼?
once we consider type inference in Section 4.

The function type 𝜎 → 𝜏 is the only built-in concrete type,

all other concrete types are specified by the programmer.

We postpone the discussion of user-specified types until Sec-

tion 3.4. The application of a higher-kinded type constructor

to type arguments is written 𝜏@(𝜎 ; 𝜌); in this example the

type constructor 𝜏 is applied to the covariant arguments 𝜎

and the contravariant arguments 𝜌 . Since we are in a subtyp-

ing system we also have union and intersection types 𝜎 ⊔ 𝜏

and 𝜎 ⊓ 𝜏 , as well as top and bottom types ⊤ and ⊥. Equi-
recursive types are written 𝜇𝛼.𝜏 and are indistinguishable

from their unfolding 𝜏 [𝜇𝛼.𝜏/𝛼].
Since we have type constructors with higher kinds in our

system, we have to specify rules for checking the kinds of

types. These rules are given in Figure 5. The judgement

Δ ⊢ 𝜏 : 𝜅 states that the type 𝜏 has kind 𝜅 in a kind environ-

ment Δ which assigns kinds to type variables. The syntax of

kind environments is specified in Figure 4.

Note that in the kinding rules in Figure 5 the function type

can only be applied to types of the inhabited kind ∗, but all
other constructions like unions, intersections, the top and

bottom type and recursive types can occur at arbitrary kinds.

This is an essential prerequisite for the correct treatment of

structural refinement types: For example, we need to be able
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𝛼, 𝛽,𝛾, 𝛿, 𝜌 ∈ TyVar

𝜎, 𝜏 F 𝛼 Skolem variable
| 𝛼? Unification variable
| 𝜏 → 𝜏 Function type
| 𝜏@(𝜏 ;𝜏) Type Application
| 𝜏 ⊔ 𝜏 | 𝜏 ⊓ 𝜏 Union, Intersection
| ⊤ | ⊥ Top and Bottom
| 𝜇𝛼.𝜏 Recursive type

Δ F 𝜖 | 𝛼 : 𝜅,Δ Kind environments
Σ F 𝜖 | 𝜎 <: 𝜏, Σ | ⊲ (𝜎 <: 𝜏), Σ Hypotheses context

Figure 4. Syntax of types for the core system.

Kinding rules: Δ ⊢ 𝜏 : 𝜅

Δ(𝛼) : 𝜅
K-Var

Δ ⊢ 𝛼 : 𝜅

Δ, 𝛼 : 𝜅 ⊢ 𝜏 : 𝜅
K-Mu

Δ ⊢ 𝜇𝛼.𝜏 : 𝜅

K-Top
Δ ⊢ ⊤ : 𝜅

K-Bot
Δ ⊢ ⊥ : 𝜅

Δ ⊢ 𝜎 : 𝜅 Δ ⊢ 𝜏 : 𝜅
K-Union

Δ ⊢ 𝜎 ⊔ 𝜏 : 𝜅

Δ ⊢ 𝜎 : 𝜅 Δ ⊢ 𝜏 : 𝜅
K-Inter

Δ ⊢ 𝜎 ⊓ 𝜏 : 𝜅

Δ ⊢ 𝜎 : ∗ Δ ⊢ 𝜏 : ∗
K-Fun

Δ ⊢ 𝜎 → 𝜏 : ∗
Δ ⊢ 𝜎 : (𝜅;𝜅 ′) → ∗ Δ ⊢ 𝜏 : 𝜅 Δ ⊢ 𝜏 ′ : 𝜅 ′

K-TyApp

Δ ⊢ 𝜎@(𝜏 ;𝜏 ′) : ∗
Δ ⊢ 𝜏 : (; ) → ∗

K-Star
Δ ⊢ 𝜏 : ∗

Figure 5. Kinding rules.

to talk about the union of the type constructors of lists and

non-empty lists. The K-Star rule witnesses the fact that a

higher order kind with no parameters is the same as kind ∗.
The declarative typing rules for the core system are pre-

sented in Figure 6. The presentation of these rules is adapted

from that in [14]. The judgement Γ ⊢ 𝑒 : 𝜏 states that the ex-

pression 𝑒 has type 𝜏 in the variable context Γ which assigns

types to term variables. Note that in this form the rule T-Sub

is not syntax directed, since it allows to change the type of

an expression at an arbitrary point in a typing derivation.

The last set of rules concern the formalization of the sub-

typing lattice, and are presented in Figure 7. The judgement

Σ ⊢ 𝜎 <: 𝜏 says that 𝜎 is a subtype of 𝜏 under the assump-

tion that the hypotheses in Σ hold. There are two different

kinds of hypotheses, guarded hypotheses ⊲(𝜎 <: 𝜏) and un-

guarded hypotheses 𝜎 <: 𝜏 . Unguarded hypotheses can be

used directly using the rule S-Hyp, but guarded hypothe-

ses must first be unlocked with the ⊳ operation before they

can be used. Hypotheses are unguarded every time we pass

Typing rules: Γ ⊢ 𝑒 : 𝜏

Γ(𝑥) = 𝜏
T-Var

Γ ⊢ 𝑥 : 𝜏

Γ ⊢ 𝑒1 : 𝜎 → 𝜏 Γ ⊢ 𝑒2 : 𝜎
T-App

Γ ⊢ 𝑒1 𝑒2 : 𝜏
Γ, 𝑥 : 𝜎 ⊢ 𝑒 : 𝜏

T-Lam

Γ ⊢ 𝜆𝑥 .𝑒 : 𝜎 → 𝜏

Γ ⊢ 𝑒 : 𝜎 𝜎 <: 𝜏
T-Sub

Γ ⊢ 𝑒 : 𝜏

Figure 6. Declarative typing rules

a type constructor in the rule S-Fun. The additional com-

plication of hypotheses contexts is necessary for the cor-

rect treatment of recursive types. Without them, we would

not be able to determine that 𝜇𝛼.Bool → 𝛼 is a subtype of

𝜇𝛼.Bool → Bool → 𝛼 , even though they have the same

infinite unfolding. This example is well-explained in [14].

Subtyping rules: Σ ⊢ 𝜎 <: 𝜏

S-Refl⊢ 𝜏 <: 𝜏
𝐻 ∈ Σ

S-Hyp
Σ ⊢ 𝐻

Σ, ⊲𝐻 ⊢ 𝐻
S-Assum

Σ ⊢ 𝐻
⊢ 𝐻

S-Weaken
Σ ⊢ 𝐻 S-Top⊢ 𝜏 <: ⊤ S-Bot⊢ ⊥ <: 𝜏

Σ ⊢ 𝜏 <: 𝜏 ′ Σ ⊢ 𝜏 ′ <: 𝜏 ′′
S-Trans

Σ ⊢ 𝜏 <: 𝜏 ′′

⊳Σ ⊢ 𝜎 ′ <: 𝜎 ⊳Σ ⊢ 𝜏 <: 𝜏 ′
S-Fun

Σ ⊢ 𝜎 → 𝜏 <: 𝜎 ′ → 𝜏 ′

Σ ⊢ 𝜏 <: 𝜏 ′ Σ ⊢ 𝜎 <: 𝜎 ′ Σ ⊢ 𝜌 ′ <: 𝜌
S-App

Σ ⊢ 𝜏@(𝜎 ; 𝜌) <: 𝜏 ′@(𝜎 ′
; 𝜌 ′)

∀𝑗∃𝑖 : Σ ⊢ 𝜏𝑖 <: 𝜎 𝑗
S-Meet

Σ ⊢ ⊓𝑖𝜏𝑖 <: ⊓𝑗𝜎 𝑗

∀𝑖∃ 𝑗 : Σ ⊢ 𝜏𝑖 <: 𝜎 𝑗
S-Join

Σ ⊢ ⊔𝑖𝜏𝑖 <: ⊔𝑗𝜎 𝑗

S-𝜇-R
Σ ⊢ 𝜏 [𝜇𝜌.𝜏/𝜌] <: 𝜇𝜌.𝜏

S-𝜇-L
Σ ⊢ 𝜇𝜌.𝜏 <: 𝜏 [𝜇𝜌.𝜏/𝜌]

where

⊳Σ = ⊳Σ ⊳(⊲𝐻 ) = 𝐻

⊳(𝜏 <: 𝜎) = 𝜏 <: 𝜎

Figure 7. Declarative subtyping rules

3.4 Structural Refinement Types
We now extend the system with user defined data types,

which are specified in Figure 8. A program contains a set of

data type declarations of the form data𝑁 : (𝜅;𝜅 ′) → ∗ { 𝑐𝑡 },
which introduce a new algebraic data type 𝑁 with kind

(𝜅;𝜅 ′) → ∗ whose name is taken from the set TyName,

together with its constructors 𝑐𝑡 . For example, the type of
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lists is defined with the following declaration:

data List : (∗; ) → ∗ {
∀𝛼.Nil() : List(𝛼 ; ),
∀𝛼.Cons(𝛼, rec@(𝛼 ; )) : List(𝛼 ; ) }

The types of the arguments inside data type declarations are

restricted to non-polar types 𝑣 , which are the subset of all

types that do not contain any lattice constructors ⊓, ⊔, ⊤ or

⊥. We also require all occurrences of rec to be in positive

positions.

The additional kinding, typing and subtyping rules are

presented in Figure 9.

𝑁,𝑀 ∈ TyName

𝑑 F data 𝑁 : (𝜅;𝜅) → ∗ { 𝑐𝑡 } Type declaration

𝑐𝑡 F ∀𝛼, 𝛼 ′. C(𝜈) : 𝑁 (𝛼 ;𝛼 ′) Constructor
declaration

𝜈 F 𝛼 Skolem variable
| 𝜈 → 𝜈 Function type
| 𝜈@(𝜈 ;𝜈) Type application
| 𝜇𝛼.𝜈 Recursive type
| ⟨ 𝑁 (𝛼 ;𝛼) | C(𝜈) ⟩ Refinement type
| rec Recursive occurrence

𝜎, 𝜏 F . . . (From Figure 4)
| ⟨ 𝑁 (𝛼 ;𝛼) | C(𝜏) ⟩ Refinement type

Figure 8. The syntax of refinement types and data declara-

tions.

4 Type Inference
In this section we present the algorithm which we use to

infer structural refinement types. The overall architecture of

the type inference algorithm follows Pottier and Rémy [16].

In their approach, one introduces a language of constraints

(Section 4.1) and then implements separate phases for first

generating constraints (Section 4.2) and then solving them

(Section 4.3). The resulting types might be very verbose and

can be compressed, which is why a type simplification pass is

needed. We will present automata-based type simplification

for structural refinement types in Section 4.4.

4.1 Constraints and Polar Types
At the heart of Hindley-Milner based type inference is the

unification algorithm which solves a set of type equalities

of the form 𝜎 ∼ 𝜏 . Starting from the initial set of generated

constraints, the unification algorithm successively applies

one of the following three operations, until no further con-

straints remain: (1) Remove equations of the form 𝜏 ∼ 𝜏 .

(2) Decompose constraints like 𝜎 → 𝜏 ∼ 𝜎 ′ → 𝜏 ′ into
simpler constraints 𝜎 ∼ 𝜎 ′

and 𝜏 ∼ 𝜏 ′. (3) Solve equations
between a unification variable and another type (like 𝛼? ∼ 𝜏 )

Kinding rules: Δ ⊢ 𝜏 : 𝜅

data 𝑁 : 𝜅{𝑐𝑡} OK

∀𝛽, 𝛽 ′. C(𝜏 [𝛽/𝛼, 𝛽 ′/𝛼 ′]) : 𝑁 (𝛽 ; 𝛽 ′) ⊆ 𝑐𝑡
K-Refine

Δ ⊢ ⟨ 𝑁 (𝛼 ;𝛼 ′) | C(𝜏) ⟩ : 𝜅

Well-formedness rules: 𝑑 OK

𝛼 : 𝜅, 𝛼 ′
: 𝜅 ′ ⊢ 𝜏 : ∗

K-Data

data 𝑁 : (𝜅;𝜅 ′) → ∗
{
∀𝛼, 𝛼 ′. C(𝜏) : 𝑁 (𝛼 ;𝛼 ′)

}
OK

Typing rules: Γ ⊢ 𝑒 : 𝜏

∀ 𝑖 : Γ ⊢ 𝑒𝑖 : 𝜎𝑖 [𝛼 ′/𝛼, 𝛽 ′/𝛽]
∀𝛼, 𝛽. C(𝜎𝑖 ) : 𝑁 (𝛼 ; 𝛽) ∈ Ctors

T-Ctor

Γ ⊢ C(𝑒𝑖 ) : ⟨ 𝑁 (𝛼 ; 𝛽) | C(𝜎𝑖 ) ⟩@(𝛼 ′
; 𝛽 ′)

Γ ⊢ 𝑒 : ⟨ 𝑁 (𝛼 ; 𝛽) | C𝑖 (𝜎𝑖 𝑗 ) ⟩@(𝛼 ′
; 𝛽 ′)

∀ 𝑖 : Γ, 𝑥𝑖 𝑗 : 𝜎𝑖 𝑗 [𝛼 ′/𝛼, 𝛽 ′/𝛽] ⊢ 𝑒𝑖 : 𝜏 [𝛼 ′/𝛼, 𝛽 ′/𝛽]{
∀𝛼, 𝛽. C𝑖 (𝜎𝑖 𝑗 ) : 𝑁 (𝛼 ; 𝛽)

}
= Ctors (𝑁 )

T-Case

Γ ⊢ case 𝑒 of {C𝑖 (𝑥𝑖 𝑗 ) ⇒ 𝑒𝑖 } : 𝜏

Subtyping rules: Σ ⊢ 𝜎 <: 𝜏

⊳Σ ⊢ 𝑠 <: 𝑡
S-Refine

Σ ⊢ ⟨ 𝑁 (𝛼 ; 𝛽) | 𝐶 (𝑠) ⟩ <: ⟨ 𝑁 (𝛼 ; 𝛽) | 𝐶 (𝑡), 𝜑 ⟩

Figure 9. Extension with structural refinement types.

by substituting 𝜏 for all occurrences of 𝛼?
in the remain-

ing constraints, possibly after performing an occurs-check.

The result of the unification algorithm is a type substitu-

tion which maps unification variables to types, such that all

constraints are satisfied.

In the algebraic subtyping approach [3, 4, 14] this scheme

is modified in order to work with type inequality constraints

𝜎 <: 𝜏 instead of type equality constraints 𝜎 ∼ 𝜏 . There

are two important problems one encounters when trying to

adapt Hindley-Milner based type inference to type inequality

constraints. First, the presence of equi-recursive types (and

the corresponding absence of an occurs-check) make special

precautions necessary in order to guarantee the termination

of the inference algorithm. This is solved by adding a cache

of solved constraints, which we will discuss in Section 4.3.

The second problem is that unions and intersections as well

as top and bottom types can now occur in constraints. To

see why this can be a problem, consider the two constraints
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𝜎1 ⊔ 𝜎2 <: 𝜏 and 𝜎 <: 𝜏1 ⊔ 𝜏2. The first constraint is equiva-

lent to the conjunction of the two constraints 𝜎1 <: 𝜏 and

𝜎2 <: 𝜏 , and can easily be handled by the constraint solver.

The second constraint 𝜎 <: 𝜏1 ⊔ 𝜏2, on the other hand, is

equivalent to a disjunction of constraints which cannot be

easily handled. The solution to this problem, proposed by [3],

is to exclude constraints of the second kind by introducing a

notion of polar types which restrict where unions and inter-

sections, top and bottom types can occur within types.

𝑝 F + | − Polarities
Π F 𝜖 | 𝛼 : 𝑝,Π Polarity context
𝑞 F 𝜎+ <: 𝜏− Constraints

¬(+) = − ¬(−) = + (Polarity switch)

Polarity check: Π ⊢ 𝜏 : 𝑝

Π(𝛼) = 𝑝
P-Bound

Π ⊢ 𝛼 : 𝑝

𝛼 ∉ Π
P-Free

Π ⊢ 𝛼 : 𝑝

P-Top
Π ⊢ ⊤ : − P-Bot

Π ⊢ ⊥ : +

Π ⊢ 𝜎 : + Π ⊢ 𝜏 : +
P-Union

Π ⊢ 𝜎 ⊔ 𝜏 : +
Π ⊢ 𝜎 : − Π ⊢ 𝜏 : −

P-Inter
Π ⊢ 𝜎 ⊓ 𝜏 : −

Π ⊢ 𝜎 : ¬(𝑝) Π ⊢ 𝜏 : 𝑝
P-Fun

Π ⊢ 𝜎 → 𝜏 : 𝑝

Π, 𝛼 : 𝑝 ⊢ 𝜏 : 𝑝
P-Mu

Π ⊢ 𝜇𝛼.𝜏 : 𝑝

Π ⊢ 𝜏 : 𝑝 Π ⊢ 𝜎 : 𝑝 Π ⊢ 𝜌 : ¬(𝑝)
P-TyApp

Π ⊢ 𝜏@(𝜎 ; 𝜌) : 𝑝

Π, 𝛼 : 𝑝, 𝛽 : ¬(𝑝) ⊢ 𝜏 : 𝑝
P-Refine

Π ⊢ ⟨ 𝑁 (𝛼 ; 𝛽) | C(𝜏) ⟩ : 𝑝

Figure 10. The restriction to polar types.

The sub-syntax of polar types is formalized in Figure 10.

We distinguish two different polar types, positive types 𝜏+

and negative types 𝜏−. The polarity of a type is checked

with the help of the judgement Π ⊢ 𝜏 : 𝑝 , where a type 𝜏 is

checked to have polarity 𝑝 in the polarity context Π which

assigns polarities to type variables. The only rules which re-

quire types to have concrete polarities are the rules P-Union,

P-Inter, P-Top and P-Bot; this is the essential restriction of

polar types. The rules P-Fun, P-TyApp and P-Refine imple-

ment the usual rules for type constructors which deal with

co- and contravariance, and make use of the helper function

¬(𝑝) for switching the polarity of contravariant arguments.

The rule P-Mu extends the context with the recursive vari-

able; this is needed to guarantee that the unfolding of a polar

recursive type is always a polar type with the same polar-

ity. Type variables which occur in the context Π must have

the polarity assigned to them in the context (rule P-Bound),

whereas type variables not contained in Π can be given any

polarity (rule P-Free). Without the latter rule, we would not

be able to assign a polarity to the sensible type 𝛼 → 𝛼 . Note

that types which don’t contain any unions and intersections

or top and bottom types, can always be checked with both

polarities.

Constraints 𝑞 must always have the form 𝜎+ <: 𝜏−. This
restriction excludes the problematic example 𝜎 <: 𝜏1 ⊔ 𝜏2 we

considered earlier in this section.

4.2 Constraint Generation

J𝛼K⊥𝜏 ≔ 𝛼 J𝛼?K⊥𝜏 ≔ 𝛼?

J𝛼K⊤𝜏 ≔ 𝛼 J𝛼?K⊤𝜏 ≔ 𝛼?

J𝜈 → 𝜈 ′K⊥𝜏 ≔ J𝜈K⊤𝜏 → J𝜈 ′K⊥𝜏
J𝜈 → 𝜈 ′K⊤𝜏 ≔ J𝜈K⊥𝜏 → J𝜈 ′K⊤𝜏

J𝜈@(𝜈 ′;𝜈 ′′)K⊥𝜏 ≔ J𝜈K⊥𝜏 @(J𝜈 ′K⊥𝜏 ; J𝜈 ′′K⊤𝜏 )

J𝜈@(𝜈 ′;𝜈 ′′)K⊤𝜏 ≔ J𝜈K⊤𝜏 @(J𝜈 ′K⊤𝜏 ; J𝜈 ′′K⊥𝜏 )
J𝜇𝛼.𝜈K⊥𝜏 ≔ 𝜇𝛼.J𝜈K⊥𝜏
J𝜇𝛼.𝜈K⊤𝜏 ≔ 𝜇𝛼.J𝜈K⊤𝜏

J⟨𝑀 (𝛼 ;𝛼 ′) | C(𝜈) ⟩K⊥𝜏 ≔ ⟨𝑀 (𝛼 ;𝛼 ′) | C(J𝜈K⊥𝜏 ) ⟩

J⟨𝑀 (𝛼 ;𝛼 ′) | C(𝜈) ⟩K⊤𝜏 ≔ ⟨𝑀 (𝛼 ;𝛼 ′) | C(J𝜈K⊤𝜏 ) ⟩

And, given data 𝑁 : (𝜅, 𝜅 ′) → ∗ {C(𝜈)}:
JrecK⊥𝑁 ≔ ⟨ 𝑁 (𝛼 ;𝛼 ′) | ∅ ⟩

JrecK⊤𝑁 ≔ 𝜇𝜌.⟨ 𝑁 (𝛼 ;𝛼 ′) | C(J𝜈K⊤𝜌 ) ⟩
JrecK⊥𝜌 ≔ 𝜌

JrecK⊤𝜌 ≔ 𝜌

Figure 11. Definitions of lower and upper bound translation

During constraint generation we take a term 𝑒 (from Fig-

ure 2) and a typing context Γ, and return a positive type

𝜏+, together with a set of constraints Ξ. This is expressed
in the corresponding judgement form Γ ⊢▶ 𝑒 : 𝜏 { Ξ. The
type 𝜏 that is generated contains unification variables, whose

precise type will be determined in the subsequent constraint

solving step. Constraint generation uses the upper and lower
bound translation functions, which are given in Figure 11.

These functions translate the types used inside a data type

declaration to the greatest and respectively least types with
respect respect to the surrounding declaration.

The constraint generation rules are given in Figure 12a,

we will now discuss the rules in detail.

22



Structural Refinement Types TyDe ’22, September 11, 2022, Ljubljana, Slovenia

The type of a variable 𝑥 is determined in rule G-Var by

looking up the type assigned to 𝑥 in the variable context Γ.
The terms for function abstraction and application are han-

dled in rules G-Lam and G-App. In order to generate a type

for a lambda abstraction 𝜆𝑥 .𝑒 , a fresh unification variable 𝛽?

is generated for the variable 𝑥 . The body of the function 𝑒

is then checked in the extended context Γ, 𝑥 : 𝛽?, resulting

in the type 𝜏 , and the type 𝛽? → 𝜏 is returned. For function

applications 𝑒1 𝑒2 the types 𝜎1 and 𝜎2 are inferred for the

function and argument, respectively. We generate a fresh uni-

fication variable 𝛽? for the result of the function application,

and add the constraint 𝜎1 <: 𝜎2 → 𝛽?.

Constructors are handled in rule G-Ctor. We first look up

the signature of the constructor C in the program; assume

that this results in ∀𝛼, 𝛼 ′. C(𝜎) : 𝑁 (𝛼 ;𝛼 ′). We then generate

fresh unification variables 𝛽? and 𝛽 ′? for the covariant and
contravariant arguments of the type 𝑁 to which the con-

structor C belongs. We return ⟨ 𝑁 (𝛼 ;𝛼 ′) | C(𝜎) ⟩@(𝛽?; 𝛽 ′?),
that is the refinement type of𝑁 containing only the construc-

tor C, applied to the freshly generated unification variables.

But we still have to generate constraints for the arguments

of the constructor! For every term 𝑒 in the argument list of

the constructor, we infer a type 𝜏 . We then add a constraint

between the inferred type 𝜏 and the type 𝜎 declared in the

data type declaration. Before we do this, we have to replace

the type variables 𝛼 and 𝛼 ′
in the type declaration with the

fresh unification variables. We also have to replace the re-

cursive occurrences of 𝑁 in 𝜎 by the fully refined type 𝑁 .

This results in the constraint 𝜏 <: J𝜎K⊤
𝑁
[𝛽?/𝛼, 𝛽 ′?/𝛼 ′] which

is ultimately emitted.

Pattern matches are handled in rule G-Case. First, we

typecheck the term on which the pattern matching is done.

The result of this typecheck is then constrained from above

by the refinement type which contains all the constructors

that appear in the patterns. Then we generate new unifica-

tion variables 𝛽?𝑖 𝑗 for all variables in the patterns and check

the cases 𝑒𝑖 of the pattern match using these new unifica-

tion variables, resulting in types 𝜏𝑖 . The resulting type of the

whole pattern match is a new unification variable 𝛾? which

is an upper bound of the types of all the cases, thus we add

constraints 𝜏𝑖 <: 𝛾 for all 𝑖 . Finally, we need to ensure that

the pattern variables are only used in a way that is compat-
ible with the refinement type of the pattern match. This is

done via theG-Compat rule which constrains the unification

variables 𝛽?𝑖 𝑗 to be above the lower bound translation J·K⊥
𝑁
of

the corresponding type in declaration of the current refine-

ment type 𝑁 , and below the upper bound translation J·K⊤
𝑁

of the same type. The compatibility rule is also indexed by

the name of the current refinement type to allow translating

occurrences of rec. Adding constraints involving the lower

bound translation is necessary to allow rejection of terms

like 𝜆𝑛. case 𝑛 of {𝑆 (𝑚) ⇒ case𝑚 of {True ⇒ True}}. In
this instance, the constraint JNK⊥N <: 𝛽? for the unification

variable 𝛽? of𝑚 which is generated in the pattern match for

𝑛 is required to later reject this program when this constraint

clashes with the constraint 𝛽? <: ⟨ Bool | True ⟩. This leads
to the constraint ⟨ N | ∅ ⟩ <: ⟨ Bool | True ⟩ by transitivity.

4.3 Constraint Solving
The constraint solver takes a list of constraints 𝑞𝑠 as input,

and produces a list of variable bounds𝐵 as output, or else fails

if the set of constraints is not satisfiable. A variable bound 𝐵

assigns to a unification variable 𝛼?
a list of lower and upper

bounds. Constraint solving is defined as a state transition

system on constraint solver states 𝑆 . A constraint solver

state 𝑆 consists of a cache of already solved constraints, a list

of constraints to be solved, and a list of computed variable

bounds. If a constraint is encountered that cannot be solved,

the constraint solver transitions into the special Fail state.

𝐵 B 𝜎+ <: 𝛼? <: 𝜎− Variable Bounds
𝑆 B {𝑄};𝑄 ⊢ 𝐵 | Fail Constraint Solver State

The algorithm terminates when there are no constraints

left to be processed. The cache is necessary to ensure ter-

mination and in order to avoid exponential runtime, as it

is possible for the algorithm to add an already processed

constraint back to its list of constraints. Initially, the cache

is empty and the list of constraints to be processed is given

by the output of the constraint generator. The initial config-

uration of the constraint solver for a list of constraints 𝑞𝑠 is

therefore:

∅;𝑞𝑠 ⊢ empty

As long as the list of constraints to be processed is not

empty, one of the rules of Figure 12b will determine the

next state of the constraint solver. These rules are applied

repeatedly until the list of constraints is empty. In the end,

this gives us a constraint solver state that correctly reflects

all the upper and lower bounds implied by the set of initial

constraints.

The ruleCacheHitwill remove the constraint if it is found

in the cache, and has therefore already been processed.

The rules UpperBound and LowerBound solve atomic
constraints whose left or the right hand side consist of a uni-

fication variable. If both 𝜎1 and 𝜎2 are unification variables,

the rule UpperBound will fire, ensuring determinism
3
. We

only discuss the rule UpperBound, since the rule Lower-

Bound works similarly. The constraint 𝛼? <: 𝜎 is solved by

adding 𝜎 to the list of upper bounds of 𝛼?
. But, as discussed

in [14], we must also make sure that this new bound is con-

sistent with the existing lower bounds of 𝛼?
. We therefore

add one new constraint between 𝜎 and each of the existing

lower bounds to the constraints to be processed. These are

the subconstraints that are implied by transitivity of the sub-

typing relation. Note that no occurs check is performed; it is

3
This is analogous to the situation in Hindley-Milner, where to solve a

constraint like 𝛼 ∼ 𝛽 , we are free to either substitute 𝛼 for 𝛽 or 𝛽 for 𝛼 .
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Constraint generation: Γ ⊢▶ 𝑒 : 𝜏 { Ξ

Γ(𝑥) = 𝜏
G-Var

Γ ⊢▶ 𝑥 : 𝜏 { ∅
Γ, 𝑥 : 𝛽? ⊢▶ 𝑒 : 𝜏 { Ξ Fresh (𝛽?)

G-Lam

Γ ⊢▶ 𝜆𝑥 .𝑒 : 𝛽? → 𝜏 { Ξ

Γ ⊢▶ 𝑒1 : 𝜎1 { Ξ1 Γ ⊢▶ 𝑒2 : 𝜎2 { Ξ2 Fresh (𝛽?)
G-App

Γ ⊢▶ 𝑒1 𝑒2 : 𝛽? {
{
𝜎1 <: 𝜎2 → 𝛽?

}
∪ Ξ1 ∪ Ξ2

Γ ⊢▶ 𝑒 : 𝜏 { Ξ ∀𝛼, 𝛼 ′. C(𝜎) : 𝑁 (𝛼 ;𝛼 ′) ∈ Ctors Fresh(𝛽?, 𝛽 ′?)
G-Ctor

Γ ⊢▶ C(𝑒) : ⟨ 𝑁 (𝛼 ;𝛼 ′) | C(𝜎) ⟩@(𝛽?; 𝛽 ′?) {
{
𝜏 <: J𝜎K⊤

𝑁
[𝛽?/𝛼, 𝛽 ′?/𝛼 ′]

}
∪ (⋃𝑖 Ξ𝑖 )

Γ, 𝑥 : 𝛽? ⊢▶ 𝑒 : 𝜏 { Ξ

Γ ⊢▶ 𝑒 : 𝜎 { Ξ Fresh (𝛽?, 𝛾?, 𝛿?, 𝛿 ′?)

C(𝛽?) ♥𝑁 C(𝜎 [𝛿?/𝛼, 𝛿 ′?/𝛼 ′]) { Ξ♥

∀𝛼, 𝛼 ′. C(𝜎) : 𝑁 (𝛼 ;𝛼 ′) ⊆ Ctors
G-Case

Γ ⊢▶ case 𝑒 of {C(𝑥) ⇒ 𝑒} : 𝛾? {
{
𝜎 <: ⟨ 𝑁 (𝛼 ;𝛼 ′) | C(𝜎) ⟩@(𝛿?;𝛿 ′?), 𝜏 <: 𝛾?,

}
∪ Ξ ∪ {⋃𝑖 Ξ𝑖 } ∪

{⋃
𝑖 Ξ♥,𝑖

}
G-Compat

C(𝛽?) ♥𝑁 C(𝜏) {
{
J𝜏K⊥

𝑁
<: 𝛽? <: J𝜏K⊤

𝑁

}
(a) Constraint generation rules. Inputs are contexts and terms, outputs are types and constraint sets.

Constraint solver step: 𝑆 ↠ 𝑆 ′

𝑞 ∈ 𝑐𝑎
CacheHit

𝑐𝑎;𝑞, 𝑞𝑠 ⊢ 𝑏𝑠 ↠ 𝑐𝑎;𝑞𝑠 ⊢ 𝑏𝑠

𝑞 ∉ 𝑐𝑎 𝑞 = 𝛼? <: 𝜎 𝑏𝑠 (𝛼?) = 𝑙𝑏𝑠 <: 𝛼? <: 𝑢𝑏𝑠
UpperBound

𝑐𝑎;𝑞, 𝑞𝑠 ⊢ 𝑏𝑠 ↠ 𝑐𝑎, 𝑞; {𝑙𝑏 <: 𝜎}𝑙𝑏∈𝑙𝑏𝑠 , 𝑞𝑠 ⊢ 𝑏𝑠 [𝛼? ↦→ 𝑙𝑏𝑠 <: 𝛼? <: {𝑢𝑏𝑠, 𝜎}]

𝑞 ∉ 𝑐𝑎 𝑞 = 𝜎 <: 𝛼? 𝜎 ∉ TyVar 𝑏𝑠 (𝛼?) = 𝑙𝑏𝑠 <: 𝛼? <: 𝑢𝑏𝑠
LowerBound

𝑐𝑎;𝑞, 𝑞𝑠 ⊢ 𝑏𝑠 ↠ 𝑐𝑎, 𝑞; {𝜎 <: 𝑢𝑏}𝑢𝑏∈𝑢𝑏𝑠 , 𝑞𝑠 ⊢ 𝑏𝑠 [𝛼? ↦→ {𝜎, 𝑙𝑏𝑠} <: 𝛼? <: 𝑢𝑏𝑠]
𝑞 ∉ 𝑐𝑎 𝑞 = 𝜎1 <: 𝜎2 𝜎1 ∉ TyVar 𝜎2 ∉ TyVar Sub(𝑞) = 𝑞𝑠 ′

SubOk

𝑐𝑎;𝑞, 𝑞𝑠 ⊢ 𝑏𝑠 ↠ 𝑐𝑎, 𝑞;𝑞𝑠 ′ ++𝑞𝑠 ⊢ 𝑏𝑠
𝑞 ∉ 𝑐𝑎 𝑞 = 𝜎1 <: 𝜎2 𝜎1 ∉ TyVar 𝜎2 ∉ TyVar Sub(𝑞) = Fail

SubFail

𝑐𝑎;𝑞, 𝑞𝑠 ⊢ 𝑏𝑠 ↠ Fail

(b) The biunification algorithm.

Decomposing non-atomic constraints: Sub(−) : 𝑞 → 𝑞/Fail
Sub(𝜏 <: ⊤) ≔ ∅ Sub(⊥ <: 𝜎) ≔ ∅

Sub(𝜏1 ⊔ 𝜏2 <: 𝜎) ≔ {𝜏1 <: 𝜎, 𝜏2 <: 𝜎} Sub(𝜏 <: 𝜎1 ⊓ 𝜎2) ≔ {𝜏 <: 𝜎1, 𝜏 <: 𝜎2}
Sub(𝜏 <: 𝜇𝛼.𝜎) ≔

{
𝜏 <: 𝜎 [𝜇𝛼.𝜎/𝛼]

}
Sub(𝜇𝛼.𝜏 <: 𝜎) ≔

{
𝜏 [𝜇𝛼.𝜏/𝛼] <: 𝜎

}
Sub(𝛼 <: 𝛼) ≔ ∅

Sub(𝜎1 → 𝜏1 <: 𝜎2 → 𝜏2) ≔ {𝜎2 <: 𝜎1, 𝜏1 <: 𝜏2}
Sub(𝜏@(𝜎 ; 𝜌) <: 𝜏 ′@(𝜎 ′

; 𝜌 ′)) ≔
{
𝜏 <: 𝜏 ′, 𝜎 <: 𝜎 ′, 𝜌 ′ <: 𝜌

}
Sub(⟨ 𝑁 (𝛼 ;𝛼 ′) | ∅ ⟩ <: ⟨ 𝑁 (𝛽 ; 𝛽 ′) | 𝜓 ⟩) ≔ ∅

Sub(⟨ 𝑁 (𝛼 ;𝛼 ′) | C(𝜏), 𝜑 ⟩ <: ⟨ 𝑁 (𝛽 ; 𝛽 ′) | C(𝜎),𝜓 ⟩) ≔

{
𝜏𝑖 <: 𝜎𝑖 [𝛼/𝛽]

}
∪ Sub(⟨ 𝑁 (𝛼 ;𝛼 ′) | 𝜑 ⟩ <: ⟨ 𝑁 (𝛽 ; 𝛽 ′) | 𝜓 ⟩)

(c) Decomposing subtyping constraints.

Figure 12. Type inference.
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possible that type variables refer to themselves recursively

through their lower or upper bounds.

If neither 𝜎1 nor 𝜎2 are type variables, we invoke the

Sub(−) function to decompose the constraint into a list of

subconstraints. This function is specified in Figure 12c. If

none of the rules in that figure match, then the function

Sub(−) returns Fail.

4.4 Type Simplification
The principal types in vanilla Hindley Milner type infer-

ence have the useful property that they are syntactically

unique
4
. For this reason, it is not necessary to simplify or

normalize the principal types that have been inferred in such

a system. The situation is different in a subtyping system,

where there are usually many equivalent but syntactically

distinct principal types for any typeable term. For exam-

ple, the term 𝜆𝑥 𝑦 𝑧.case 𝑥 of {True ⇒ 𝑦, False ⇒ 𝑧}
can be given the syntactically distinct but equivalent types

∀𝛼𝛽.Bool → 𝛼 → 𝛽 → 𝛼 ⊓ 𝛽 and ∀𝛼.Bool → 𝛼 → 𝛼 → 𝛼 .

In this case, we would prefer to display the second type to the

user, since it is syntactically shorter and easier to understand.

There are two main approaches to simplify types. The

direct approach presented by Parreaux [14, Section 4] works

directly on types and has a simpler implementation. The

alternative is the automata-based approach of Dolan [3]. It

uses a close correspondence between types and their encod-

ing in finite automata, witnessed by a representation theo-
rem [3, Section 7]. This theorem states that any two type

automata represent the same type iff they accept the same

language. Therefore, any algorithm for simplifying finite au-

tomata can be used to simplify types, which permits the use

of generic, well-known algorithms from automata theory.

For our purposes, we assume the same equivalence for our

type automata, using them to simplify our inferred types,

though we do not prove the corresponding theorem.

As an example, let us observe how the type of the Boolean

negation function is simplified. The negation function is

given by

def not ≔ 𝜆𝑏. case 𝑏 of {True ⇒ False, False ⇒ True}.

The inferred type is somewhat convoluted. Figure 13 de-

picts the type automata as generated initially along with the

type automata after the determinisation step. The simplified

inferred type of not is—as one would expect—

⟨ Bool | True, False ⟩ → ⟨ Bool | True, False ⟩.

Meet and join types correspond to non-deterministic tran-

sitions, while equi-recursive types correspond to cyclical

type automata, as shown in Figure 14. Here we can see the

necessity of the polarity restriction for recursive types dis-

cussed in Section 4.1: Occurrences of 𝜇-bound variables are

4
Unique up to 𝛼-equivalence, of course.

→

⟨ B | True, False ⟩

⟨ B | True ⟩

⟨ B | False ⟩

Before determinisation:

dom

dom
rng

rng

rng

→

⟨ B | True, False ⟩ ⟨ B | True, False ⟩

After determinisation:

dom rng

Figure 13. Determinisation of type automata for type

⟨ Bool | True, False ⟩ → ⟨ Bool | True, False ⟩. The shad-
ing of the states signifies polarity, where gray is negative

and white is positive.

represented by cyclical transitions back to the state corre-

sponding to the recursive type; as such, they must possess

the same polarity.

⟨ N | 𝑍, 𝑆 (_) ⟩ ⟨ N | 𝑆 (_) ⟩

𝑆 (•)

𝑆 (•)

Figure 14. Type automata for refinement type of even Peano

numbers 𝜇𝛼.⟨ N | 𝑍, 𝑆 (⟨ N | 𝑆 (𝛼) ⟩) ⟩

Higher-kinded types are represented in the same way as

types of kind ∗, except that the kind annotations (not visible

in the automata figures) are different. For meets and joins,

only nodes with the same kind may be merged during the

determinisation. Type application is handled analogously to

the representation of the function type. An example for an

automaton involving higher-kinded types can be found in

Figure 15 which depicts the type of a singleton list containing

only the value True.

5 Related Work
We have identified the following areas of related work:

Algebraic Subtyping: The elegant combination of type in-

ference, parametric polymorphism and subtyping has been

a longstanding problem. The algebraic subtyping approach

was developed as a solution to this problem by Dolan [3]
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_@(_; )

⟨ List(𝛼 ; ) | Cons(_, _) ⟩ ⟨ Bool | True ⟩

𝛼 _@(_; )

⟨ List(𝛽 ; ) | Nil ⟩ 𝛼

•@(_; ) _@(•; )

Cons(•, _) Cons(_, •)

•@(_; )
_@(•; )

Figure 15. Type automaton for type of one-element Bool list
⟨ List(𝛼 ; ) | Cons(𝛼, ⟨ List(𝛽 ; ) | Nil ⟩@(𝛼 ; )) ⟩@(⟨ Bool | True ⟩; )

and Dolan and Mycroft [4]. Algebraic subtyping is the cen-

tral foundation on which our paper builds. We have also

profited from the presentation of the underlying algorithm

and ideas of the algebraic subtyping approach by Parreaux

[14]. Parreaux and Chau [15] have recently been working

on extending the algebraic subtyping approach by lifting the

polarity restriction and allowing unions and intersections in

arbitary positions in types. We plan to investigate the possi-

ble interaction of their extended system with our structural

refinement types in future work.

Polymorphic variants: The algebraic subtyping approach
is, in general, not particularly concerned with the concrete

types available in the system, only with the algebraic prop-

erties of the subtyping lattice. For example, [3, 4] illustrate

their approach with a system which only contains booleans,

functions and records. In this paper we study the combina-

tion of ordinary algebraic data types, which all languages

in the ML lineage support, with polymorphic variants. Poly-

morphic variants [7, 8] allow to program with the familiar

tools of functional programming: building up data with con-

structors and decomposing with pattern matching. But they

don’t require the programmer to declare the data types and

their constructors in advance. Structural refinement types

combine the typing rules for algebraic data types with the

typing rules of polymorphic variants.

Record subtyping and codata types: There is a well-known
duality between data types and codata types [1, 5, 9, 17]. A

special instance of this duality is the duality of polymorphic

variants and extensible records [8]. In fact, we have devel-

oped and implemented the ideas presented in this paper in

the more general context of algebraic data and codata types.

We have specialized the formalization to data types and poly-

morphic variants in order to simplify the presentation, but

the extension to the more general setting is straightforward.

Refinement types: Refinement types in our sense were

introduced in a seminal paper by Freeman and Pfenning

[6]. They conceive of refinement types as abstract domains,

which have to be manually specified by the programmer in

advance. They require a finite number of refinement types

in order to keep type inference decidable within the inter-

section type system they use.

Another recent system with a very similar aim are the

intensional refinement types of Jones and Ramsay [12]. In

distinction to our system, they can only express the complete

absence of a constructor in a refinement type. For example,

they cannot express the type of nonempty lists, since that

type requires to exclude the nil constructor only as the

outermost constructor. A huge benefit of their paper, on the

other hand, is the detailed study of the computational cost

of tracking type refinements. We have not yet attempted

to characterize the computational cost of our refinements

theoretically or empirically.

Variance of type parameters The idea of co- and contravari-
ant type parameters has been explored in-depth in the litera-

ture on object-oriented subtyping [11]. A significant trade-off

in the design of a variance mechanism is the difference be-

tween use-site and definition-site variance [2]. With regard

to this distinction, structural refinement types as presented

here offer definition-site variance.

6 Future Work
We have implemented the refinement types described in this

paper in the Duo language, and we plan to provide both a

theoretical and empirical evaluation of that system. We plan

to provide proofs of the soundness of the system as well as

the principal types property in the future. We conjecture that

it is relatively straight-forward to modify the existing proofs

provided by Dolan [3] and Parreaux [14]. For an empirical

validation we plan to implement larger case studies which

can help evaluate whether the expressivity of the refinement

types is useful in practice, and whether the type inference

algorithm scales well with larger programs.

7 Discussion
We have presented a type inference algorithm for structural
refinement types, which combines properties of both alge-

braic data types and polymorphic variants. These novel types

allow us to express refinements on algebraic data typeswhich

correspond to regular sublanguages. In contrast to other

refinement type systems, our approach uses only familiar

techniques from constraint based type inference. As a result,

the addition of these types to a language which already im-

plements the algebraic subtyping approach is comparatively

simple. We have implemented structural refinement types in
the Duo language

5
.

5
Publically available at github.com/duo-lang.
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