
Towards Naturalistic EDSLs using Algebraic E�ects
Jonathan Immanuel Brachthäuser

University of Tübingen, Germany

Abstract
Domain speci�c programming languages bridge the linguistic and
conceptual gap between domain languages and implementation
languages. One aspect of bridging the gap is to express the do-
main speci�c concepts in a language more natural for the domain
experts. In recent years, in linguistics, concepts from computer
science such as e�ect operations (e.g. shi�/reset and continuations
in general) have successfully been used to provide compositional
models for natural language semantics. We propose to pick up the
old theme of naturalistic DSLs and reevaluate it in the scope of
algebraic e�ects. Building on the insights of linguists, we demon-
strate how linguistic features such as anaphora, quanti�cation and
implicature can directly be implemented in the Do�y programming
language using a library for algebraic e�ects. As opposed to ad hoc
implementation techniques for naturalistic DSLs, systematically
using algebraic e�ects and e�ectful syntax leads to programs that
exactly communicate the usage of linguistic features in their types,
o�ers improved error reporting and be�er IDE support. We believe
that e�ectful syntax opens up a new interesting perspective on the
design and implementation of naturalistic DSLs.

ACM Reference format:
Jonathan Immanuel Brachthäuser. 2017. Towards Naturalistic EDSLs using
Algebraic E�ects. In Proceedings of Workshop for Domain Speci�c Languages,
Design and Implementation, Vancouver, Canada, 2017 (DSLDI), 3 pages.

1 Introduction
Bridging the conceptual gap between domain and implementation
language by designing domain speci�c languages (DSLs), which are
closer to the natural language, is an idea as old as it is controversial.
Natural languages have the reputation of being lexically and syn-
tactically ambiguous, having complicated and context dependent
binding structures and o�en a non-trivial semantics, which rarely
is compositional. In short, a�ributes programmers don’t like and
programming language designers are at best fascinated by. In con-
sequence, many domain speci�c languages are still far away from
being close to natural language. �is is in particular the case for
DSLs, which are embedded into a general purpose language. With
embedded DSLs the host language additionally imposes its own
syntactical restrictions and typing discipline on the DSL designer.
While each of those limitations is addressed in its own line of work
(e.g. syntax extensions as libraries, domain speci�c type system
extensions) our focus here is on linguistic constructs, which are
usually neglected since they are inherently non-context-free.

In about the last decade, many developments in modelling the
semantics of natural languages have been inspired by computer
science and the theory of abstract machines and control operators
in particular. Delimited continuations (using for instance Danvy
and Filinski’s shi� and reset (1990)) have successfully been used
to model quanti�cation (“John loves every women” ), focus (“John

DSLDI, Vancouver, Canada
2017. �is is the author’s version of the work. It is posted here for your personal use.
Not for redistribution.

loves Mary” ) and polymorphic coordination (“John and Mary le�” )
(Barker and Shan 2004; Shan 2004, 2005).

Maršı́k and Amblard (2016) very recently used algebraic e�ects
with handlers to give a compositional semantics to deixis (“John
loves me” ), quanti�cation with scope islands and implicature (“John,
my best friend, loves me” ). Algebraic e�ects (Plotkin and Power
2003) with handlers (Bauer and Pretnar 2015; Plotkin and Pretnar
2009), described in engineering terms, separate the declaration
of e�ectful operations and their usage from the implementation
in e�ect handlers. Typically, to implement an e�ect operation
the e�ect handlers obtain access to the delimited continuation,
that is, the remaining program a�er the e�ect usage up to the
handler. Compared to control operators, algebraic e�ects with
handlers closely correspond to multipromt delimited continuations
(Kiselyov and Sivaramakrishnan 2016). Roughly, every handler
introduces a prompt marker and an e�ect operation constitutes
a shi� up to the corresponding handler-prompt. In the context
of natural language semantics, shi�ing to di�erent handlers is
essential to enable disambiguation of quanti�ers (Barker 2002) and
combining di�erent scoping constructs in a single sentence (Maršı́k
and Amblard 2016).

While using insights from linguistics for programming language
design is an old idea (Lopes et al. 2003), in this talk proposal, we
propose to reconsider the current approach of design and imple-
mentation of embedded DSLs by taking recent developments of
computer linguistics and algebraic e�ects into account. We con-
jecture that algebraic e�ects are a solid foundation to implement
novel syntactic features for embedded naturalistic DSLs, which we
refer to as e�ectful syntax.

2 E�ectful Syntax – Examples from Natural
Language

To provide some context and support our conjecture, this section
shows examples from natural language semantics (Maršı́k and Am-
blard 2016), implemented in Do�y (the Scala of the future1) using a
library for algebraic e�ects (Scala-E�ekt2). �is should serve only
as a �rst example domain. �e idea of e�ectful syntax goes beyond
the domain of natural languages and we plan to collaboratively
explore other domains with the workshop participants3. Our ex-
perience in implementing these examples makes us believe that
e�ectful syntax is (i) modular – linguistic e�ects and handlers can
be encapsulated in modules, separated from the remaining syntax
(ii) learnable – separating linguistic e�ects from domain concepts
allows the DSL user to learn both separately, also strong (e�ect)
typing enables be�er error messages for wrong usage of linguistic
constructs (iii) maintainable – user programs concisely express
the use of linguistic features in their (e�ect) types, opening up
opportunity for refactorings and IDE support.

1h�p://do�y.epfl.ch
2h�p://b-studios.de/scala-e�ekt
3�e full code and an interactive programming environment is available online at:
h�ps://scastie.scala-lang.org/scfQA0CHQmKfxCKx7TfNgw.

http://dotty.epfl.ch
http://b-studios.de/scala-effekt
https://scastie.scala-lang.org/scfQA0CHQmKfxCKx7TfNgw


DSLDI, 2017, Vancouver, Canada Jonathan Immanuel Brachthäuser

trait Sentences[NP, S ] {
def person(name : String) : C[NP ]
def man(person : NP) : C[S ]
def woman(person : NP) : C[S ]
def loves(src : NP, trg : NP) : C[S ]
def bestFriendOf (friend : NP, person : NP) : C[S ]
def said (person : NP, sentence : S) : C[S ]
def forall (f : NP ⇒ C[S ]) : C[S ]
def and(�rst : S, second : S) : C[S ]

}

(a) Syntax of the Sentences EDSL as a shallow embedding.

(e�ect signature) trait Speaker extends E� {def speaker () : Op[NP ] }
(e�ect operation) def me : NP using Speaker
(e�ect handler) def said�ote(speaker : NP, sentence : S using Speaker) : C[S ]
(e�ect signature) trait Scope extends E� {def scope[A](k :(A ⇒ C[S ]) ⇒ C[S ]) : Op[A] }

(e�ect operation) def every (pred : NP ⇒ C[S ]) : NP using Scope
(e�ect handler) def scoped (f : S using Scope) : C[S ]
(e�ect signature) trait Implicature extends E� {def imply (s : S) : Op[Unit] }
(e�ect operation) def whoIs(person : NP, pred : NP ⇒ C[S ]) : NP using Implicature
(e�ect handler) def accommodate(f : S using Implicature) : C[S ]

(b) E�ect signatures and handlers for the linguistic e�ects Speaker , Scope and Implicature .

Figure 1. Syntax of the Sentences EDSL and the interface for linguistic e�ects.

Figure 1a de�nes the syntax of our EDSL for sentences. �e
type constructor C (pronounced “control”) represents e�ectful
computation, and is a monad provided by the E�ekt library with
the corresponding monadic methods and properties. To also allow
e�ectful semantics of the EDSL, all return types are wrapped in C .
In the de�nition of linguistic e�ects (Figure 1b) and in user pro-
grams, we assume S and NP to be the type used for the semantics
domain of sentences and nominal phrases, respectively4.

The Speaker E�ect. We begin with a simple sentence that uses the
speaker e�ect to refer to the contextual speaker of the sentence:

val s1 : S using Speaker = john said {mary loves me }

�e type annotation of sentence s1 tells us that the sentence uses
the speaker e�ect5. Trying to run the example sentence without
providing a speaker will give an error similar to: “�is sentence uses
‘me‘ and requires a speaker to be in the context”. �e speaker e�ect
can be handled locally by using the handler said�ote :

val s2 : C[S ] = john said�ote {mary loves me }

�e type of the sentence re�ects that no e�ect is le� to be handled,
so we can run the sentence to obtain said(John, loves(Mary, John)).

The Scope E�ect. Passing down context information like we did
with the Speaker e�ect does not yet require algebraic e�ects with
handlers, since we could just as well have used implicits arguments
in Scala to pass down the speaker. �ings become more interesting
when we consider the scope e�ect, which, similar to a CPS monad,
can be used to model universal quanti�cation.

val s3 : C[S ] = scoped { john said�ote every (woman) loves me }

Here, the e�ect operation every takes a predicate and uses the
scope e�ect to generate a universal quanti�cation at the point
where the e�ect is handled by scoped . Running s3 , we see that
this leads to a systematic “rewrite” of the syntax tree, moving the
introduced binder up to the �rst occurrence of the handler scoped .
forall(x => implies(woman(x), said(John, loves(x, John))))

4We also assume variants of operations like said that are li�ed to C in their argu-
ments. Following a Scala standard pa�ern for extension methods, binary operations
are wri�en in�x by a�aching a corresponding method to the �rst argument (e.g.
def said (s : C[S ]) : C[S ] for the li�ed variant).

5�e E�ekt library employs a capability passing style: capabilities are created by
e�ect handlers and passed down to the usage of the e�ect. E�ekt makes use of
the recently introduced Do�y feature of implicit function types and de�nes the
following type alias type using[A, E ] = implicit Cap[E ] ⇒ C[A] , which can be
used in�xed in Scala. �us, the sentence s1 is equivalent to the more explicit
val s1 = implicit(c : Cap[Speaker]) ⇒ john.said (mary .loves(me(c)))

The Implicature E�ect. �e last e�ect we present, implicature, is
similar to the scope e�ect in that it uses the continuation to achieve
a rewriting of the syntax tree.

val s4 : S using Speaker =
accommodate {mary loves { john whoIs { bestFriendOf me } } }

Running the example sentence s4 with speaker Pete, shows how
the annotated apposition is li�ed up to the accommodate handler
and introduces a conjunction.
and(bestFriendOf(John, Pete), loves(Mary, John))

�e sentence s4 also shows that multiple linguistic e�ects can
naturally be combined. �e type of statements expresses which
e�ects are not yet handled. �e idea of e�ectful syntax is of course
completely independent of Scala and the sentence DSL could sim-
ilarly be implemented in other languages that support algebraic
e�ects and handlers. However, since we embedded the DSL into
Scala, we could customize the compile time errors, when e�ects are
not handled. �is customization might be an interesting feature
addition for languages with native support for algebraic e�ects like
Koka (Leijen 2014).

3 Conclusions
In the talk, we will suggest to consider algebraic e�ects for the
design and implementation of more naturalistic EDSLs. We hope
that our proposal triggers a vivid discussion about other application
domains and sparks new research opportunity to develop novel
abstraction mechanisms for e�ectful syntax, assisting the design
and maintenance of naturalistic DSLs.

References
Chris Barker. 2002. Continuations and the nature of quanti�cation. Natural language

semantics (2002).
Chris Barker and Chung-chieh Shan. 2004. Continuations in natural language. CW

(2004).
Andrej Bauer and Matija Pretnar. 2015. Programming with algebraic e�ects and

handlers. Journal of Logical and Algebraic Methods in Programming 84, 1 (2015),
108–123.

Olivier Danvy and Andrzej Filinski. 1990. Abstracting Control. In Proceedings of the
Conference on LISP and Functional Programming. ACM.

Oleg Kiselyov and KC Sivaramakrishnan. 2016. E� directly in OCaml. In MLWorkshop.
Daan Leijen. 2014. Koka: Programming with Row Polymorphic E�ect Types. In

Proceedings of the Workshop on Mathematically Structured Functional Programming.
Cristina Videira Lopes, Paul Dourish, David H. Lorenz, and Karl Lieberherr. 2003.

Beyond AOP: Toward Naturalistic Programming. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications (Onward!
track). ACM, Anaheim.

Jirka Maršı́k and Maxime Amblard. 2016. Introducing a Calculus of E�ects and Handlers
for Natural Language Semantics. In International Conference on Formal Grammar.
Springer.

Gordon Plotkin and John Power. 2003. Algebraic operations and generic e�ects. Applied
Categorical Structures 11, 1 (2003), 69–94.



Towards Naturalistic EDSLs using Algebraic E�ects DSLDI, 2017, Vancouver, Canada

Gordon Plotkin and Matija Pretnar. 2009. Handlers of algebraic e�ects. In European
Symposium on Programming. Springer-Verlag, 80–94.

Chung-chieh Shan. 2004. Delimited continuations in natural language. In Continuation
Workshop.

Chung-chieh Shan. 2005. Linguistic Side E�ects. In Proceedings of the Symposium on
Logic in Computer Science. University Press.


	Abstract
	1 Introduction
	2 Effectful Syntax – Examples from Natural Language
	3 Conclusions
	References

