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Effect handlers have recently gained popularity amongst programming language researchers. Existing type-

and effect systems for effect handlers are often complicated and potentially hinder a wide-spread adoption.

We present the language Effekt with the goal to close the gap between research languages with effect handlers

and languages for working programmers. The design of Effekt revolves around a different view of effects and

effect types. Traditionally, effect types express which side effects a computation might have. In Effekt, effect
types express which capabilities a computation requires from its context. While this new point in the design

space of effect systems impedes reasoning about purity, we demonstrate that it simplifies the treatment of

effect polymorphism and the related issues of effect parametricity and effect encapsulation. To guarantee effect

safety, we separate functions from values and treat all functions as second-class. We define the semantics of

Effekt as a translation to System Ξ, a calculus in explicit capability-passing style.

1 INTRODUCTION
Effects and handlers [Plotkin and Pretnar 2013] have become quite popular in programming lan-

guage research, recently. Effectful expressions are expressions that depend on or modify the context

they are evaluated in [Wright and Felleisen 1994]. Effect systems extend the guarantees of program-

ming languages from type safety to effect safety: all effects (e.g., exceptions) are eventually handled,
and they are not accidentally handled by the wrong handler. Effect handlers allow novel ways to

structure effectful programs as reusable libraries [Plotkin and Pretnar 2013], while guaranteeing

effect safety and enabling equational reasoning with effect parametricity [Zhang and Myers 2019].

A well-known downside of current languages with effect handlers is that, arguably, their seman-

tics (both dynamic and static) is too complicated to be put into practical use at scale. To guarantee

effect safety, existing implementations incorporate sophisticated type- and effect systems. To master

these effect systems, programmers need to study the corresponding languages intensively. The

combination of effects with higher-order functions requires support for effect polymorphism – a

delicate feature, which is particularly difficult to understand and reason about, as witnessed by

recent publications [Biernacki et al. 2020; Brachthäuser et al. 2020b; Zhang and Myers 2019]. Some

languages (Frank [Lindley et al. 2017], Koka [Leijen 2017c], and Helium [Biernacki et al. 2020])

attempt to hide effect polymorphism behind syntactic sugar. However, this masquerade often breaks

down in more sophisticated use cases and details of effect polymorphism leak to the startled user.

In this paper, we take a radically different view on effect systems for languages with effect

handlers. Traditionally, effect types express which side effects a computation might have, besides

computing the resulting value. Instead, we take on a different interpretation where effect types

express which capabilities a computation requires from its context. This different perspective opens

up a novel design space, offering different trade-offs, which this paper starts to explore. We present

the design of Effekt, a new language with support for effects and handlers. While Effekt has the

This is an extended version of the paper [Brachthäuser et al. 2020a]:

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as Capabilities:

Effect Handlers and Lightweight Effect Polymorphism. Proc. ACM Program. Lang. 4, OOPSLA, Article 126
(November 2020).

Compared to the published paper, this report contains the full operational semantics of System Ξ, typing rules for the

extended runtime semantics, and more details on our soundness proof (see Appendix A).
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established dynamic semantics of lexically scoped effects [Brachthäuser and Schuster 2017], it is

equipped with an effect system, which we claim is significantly more lightweight than those of

existing languages with effect handlers. Effekt avoids the complexity that comes with parametric
effect polymorphism simply by omitting the feature from the language.

1.1 Effects as Requirements: The Contextual Reading
In languages with effect systems, effectful functions generally have a type like α→ β/ ϵ , where
α and β are meta variables representing value types, and ϵ is a meta variable that represents a

collection of effects. We identify two possible readings of such a type signature.

The Traditional Reading. Traditionally, the signature would be read as follows:

"Given a value of type α , the function produces a value of type β and has effects ϵ".

Effects are often seen as a side effect or additional “output” of a function: effectful expressions

modify the evaluation context. In particular, an empty ϵ implies that the function cannot have effects

– it is pure. In contrast, a non-empty ϵ suggests that a function is effectful.

The Contextual Reading. In this paper, we propose a novel reading of the types of effectful

functions given above, inspired by Osvald et al. [2016].

"Given a value of type α , the function produces a value of type β and requires the

calling context to handle effects ϵ".

We interpret effects as a requirement to the caller or additional “input” to a function: effectful

expressions depend on the evaluation context. In particular, an empty ϵ implies that the function

does not impose any requirements on its caller – it is contextually pure. Contextual purity does

not imply purity; a contextually pure function may be side-effecting, but those effects are handled

elsewhere. In contrast, a non-empty ϵ suggests that the function is contextually effectful, meaning

that the context is responsible for handling the effects.

1.2 An example
The following example program in Effekt uses a higher-order function eachLine, which takes two

arguments: a file someFile and a block (in braces) and calls the block on each line in the file. In the

example, we cannot process empty lines and therefore abort by throwing an exception.

try {

eachLine(someFile) { (line) ⇒

if (line == "") { do Exception() } else { ... }

}

} with Exception { () ⇒ println("empty line") }

What should the signature of eachLine be and how should that type be interpreted?

The Traditional Reading. In an effect language that uses the traditional reading (we use Koka [Leijen

2017c] here for illustration), a conceivable signature would be this:

eachLine : (file, string → <> ()) → <> ()

The type of the function parameter has an empty effect row <>, which means it cannot have any

effects. Under this type signature our example would not type check, since we pass an anonymous

function (block) that throws exceptions and thus does have an effect. We could change the signature

of eachLine to indicate that the function parameter may throw exceptions. Since eachLine calls
its function parameter, we have to adapt the resulting effect type as well:

eachLine : (file, string → <exception> ()) → <exception> ()
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Specializing signatures of higher-order functions to every use-site is practically not feasible and so

Koka offers support for parametric effect polymorphism.

eachLine : forall<e> (file, string → e ()) → e ()

The Contextual Reading. Clearly, demanding the parameter of eachLine to be pure is too strict, as

the example illustrates. Extending the signature for a particular use case is not a modular solution.

Effect polymorphism comes with its own set of problems, which we discuss in a moment. In any

case, the traditional reading does not allow to express that the parameter of eachLine should be

contextually pure, which is expressed as follows in Effekt:
Effects provided by eachLine︷︸︸︷

︸︷︷︸
Effects required by eachLine

def eachLine(file: File) { f: String ⇒ Unit / {} }: Unit / {}

where {} denotes the empty set of effects and types of block parameters (like f) are enclosed in

braces
2
. Applying the contextual reading, the return type of eachLine communicates that it does

not require any effects. In consequence, we can call eachLine in any context. More interestingly,

the type of the block parameter f also mentions no effects. The function f is contextually pure:

While the caller of f might observe additional effects (for instance through mutable state), it cannot

handle them. Instead, all effects that are used by f have to be handled at the call-site of eachLine.
In our example, the Exception effect used to signal empty lines is handled at the call site.

1.3 Parametric vs Contextual Effect Polymorphism
Effect polymorphism means that programmers can reuse eachLine with different function argu-

ments with different effects. In languages like Koka, with support for parametric effect polymor-

phism, this amounts to instantiating the effect variable e to the effects of choice (i.e., exception in

our example). With parametric effect polymorphism, signatures of functions make it explicit, which
effects they do not care about, which might seem counterintuitive. Parametric effect polymorphism

complicates function signatures and care must be taken to avoid accidental capture [Zhang and

Myers 2019] and guarantee encapsulation [Convent et al. 2020]. We agree with Lindley et al. [2017],

who state that users should not be confronted with the details of effect polymorphism

In designing Frank we have sought to maintain the benefits of effect polymorphism

whilst avoiding the need to write effect variables in source code.

and with Leijen [2017c], who states that

In practice though we wish to simplify the types more and leave out “obvious” poly-

morphism.

Languages like Koka and Frank, attempt to hide the details of parametric effect polymorphism behind

syntactic sugar. However, once programs get sufficiently complicated, the syntactic abstraction

breaks down and effect polymorphism becomes visible to the user (for instance in error messages).

To the best of our knowledge, all languages with support for effects and handlers and static

effect-typing support this parametric form of effect polymorphism.

Contextual Effect Polymorphism. In contrast, Effekt offers contextual effect polymorphism. Effekt
does not have language constructs for type-level effect variables or quantification over effects. Still,

it supports effect polymorphic reuse of functions and guarantees effect safety. We say that effect

2
Enclosing the type of block parameters in braces mimics the syntax at the call site and furthermore helps to distinguish

blocks from traditional first-class functions / lambdas.
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polymorphism in Effekt is contextual. Users never have to deal with parametric effect polymorphism

as the feature simply does not exist: polymorphism implicitly arises from the calling context, as we

are going to elaborate in the formal part of the paper. Our running example type- and effect-checks

without modification in Effekt.

1.4 Lexically Scoped Handlers through Explicit Capability Passing
To establish a dynamic semantics consistent with contextual effect polymorphism, Effekt programs

are translated to a calculus System Ξ (Section 4) in explicit capability-passing style [Brachthäuser

and Schuster 2017; Brachthäuser et al. 2020b], implementing lexically scoped handlers [Biernacki

et al. 2020; Zhang and Myers 2019]. Translating our running example to System Ξ shows that

handler implementations are represented as blocks and passed to the call-site of the effect operation:

handle { Exception ⇒

eachLine(someFile, { line⇒ if (line ≡ ””) Exception () else ... })
} with { (resume) ⇒
println(”empty line”)

}

Here, we assume the above signature of eachLine: the Exception effect is not handled by the call to

eachLine. Instead, the handler for Exception creates a capability and binds it to the equally named

term variable, highlighted in gray. Explicit capability passing is essential to establish a lexical
connection between an effect handler and the operations it handles. The block passed to eachLine
simply closes over the capabilities that are in scope at its definition site. Closing over capabilities

avoids accidental handling, a problem that arises when handlers are allocated on the stack and

dynamically searched at runtime. Capability passing also enables effect parametric reasoning: from
inspecting the type of eachLine, we know that there is no way it can modify the semantics of the

Exception effect [Biernacki et al. 2020; Brachthäuser et al. 2020b; Zhang and Myers 2019].

The semantics of Effekt is designed to be consistent with the expectations implied by contextual

reading of effect annotations. In particular, changing the signature of eachLine to

def eachLine(file: File) { f: String ⇒ Unit / { Exception } }: Unit / {}

signals that eachLine now can handle Exception effects. This is also reflected in the translation:

handle { Exception ⇒

eachLine(someFile, { (line, Exception ) ⇒ if (line ≡ ””) Exception() else ... })
} with { (resume) ⇒
println(”empty line”)

}

The block now binds an Exception capability, shadowing the one of the surrounding handler.

1.5 Purity: Traditional vs. Contextual Reading
While a function with an empty set of effects is pure in the traditional reading, the same is not true

for the contextual reading. A contextually pure function can still have effects, it merely places no

requirements on its caller. Purity only holds relative to the function’s definition site. Consider the

following two functions:

def hof1 { f: () ⇒ Unit } = { f(); 2 }

def hof2 { f: () ⇒ Unit } = { 2 }
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In the traditional reading, hof1 and hof2 would be equivalent since fmust be pure. However, in our

language, the following code demonstrates that they are not equivalent in the contextual reading.

try { hof1 { do Exception() } } with Exception { () ⇒ 1 }

This code will yield 1 but if we replace the invocation of hof1 by hof2 it will yield 2.

1.6 Contextual Reading and Second-Class Functions
To support contextual effect polymorphism and at the same time guarantee effect safety, the type-

and effect system of Effekt strictly separates values from blocks (Section 3.2). Furthermore, blocks

are considered second-class [Osvald et al. 2016] and can neither be returned nor stored in data

structures. The following example illustrates, why first-class blocks would be problematic:

try { def leak(): Unit / {} = { do Exception() }; leak } with Exception { ... };

Here, we define the block leak, which lists no effects since they are handled in its definition context.

However, using the leaked block outside of the corresponding delimiter try { ... } is not safe
and leads to a runtime error. To prevent this, while Effekt supports higher-order functions (like
eachLine), it does not support first-class functions. The loss of expressivity is the price for an effect

system, which we argue is significantly more lightweight, while offering full safety guarantees

and reasoning with effect parametricity. While we can imagine to recover the lost expressivity

and separately add first-class functions [Osvald et al. 2016] or infer whether functions are first- or

second-class [Zhang et al. 2016], in this paper we explicitly refrain from doing so, laying ground

for future explorations.

1.7 Overview and Contributions
The remainder of this paper is structured as follows. Section 2 offers an example-driven introduction

to programming with effect handlers in the Effekt language. It illustrates how our reading of effects

goes hand-in-hand with our translation to explicit capability-passing style. We then formally

define Effekt (Section 3) and provide the operational semantics of Effekt by translating programs

to System Ξ (Section 4) – a calculus in explicit capability-passing style. We prove soundness of

System Ξ and of our translation from Effekt to System Ξ (Section 5). We practically evaluate Effekt
by presenting a practical implementation

3
scaling Effekt to a fully fledged language (Section 6).

Finally, in Section 7 we discuss implications of the contextual reading and compare Effekt to related
work on effect handlers. This paper makes the following contributions:

• A formal presentation of the language Effekt with effect handlers and effect safety, but

without parametric effect polymorphism (Section 3).

• An algorithmic effect system, which is rooted in a different understanding of effects, reading

effects as requirements that need to be fulfilled by the context. Effect types in Effekt are sets
not rows or lists, which we argue makes them easier to understand (Section 3.2).

• A calculus System Ξ in explicit capability-passing style, supplying handler implementations

as additional arguments to effectful functions (Section 4). The type system of System Ξ does

not include effects or effect types. Instead, handler implementations are represented as blocks

and effect safety is established by treating blocks as second class (Section 4.2).

• A definition of the semantics of Effekt by translation into System Ξ (Section 5), which is the

first formalization of a translation from a language with effect handlers to explicit capability-
passing style (Section 5).

• A mechanized proof of soundness of System Ξ, a proof of well-typedness preservation of the

translation, and a proof of effect safety of Effekt (Sections 4 and 5).

3https://effekt-lang.org
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• An implementation of Effekt, compiling programs to JavaScript and using a library imple-

mentation of multi-prompt delimited control (Section 6).

• A practical evaluation by extending the calculus to a fully fledged language and implementing

several medium-sized case studies (Section 6.3).

2 PROGRAMMINGWITH EFFECTS AND HANDLERS IN Effekt
In Section 1, we have seen how exceptions are raised and handled in Effekt. However, exceptions are
just an instance of the more powerful concept of effects and handlers [Plotkin and Pretnar 2013]. In

general, with effect handlers programs are structured into three components: Effect signatures that
define available effect operations, effectful programs that use effect operations, and effect handlers
that give meaning to the effect operations. In this section, we introduce programming with effect

handlers in Effekt and illustrate the contextual reading of effects in several examples. The examples

illustrate that, despite the contextual reading, programming with effects and handlers in Effekt
is not much different from existing languages. Differences only become visible in examples that

require effect polymorphism, like higher-order functions. As a running example, we adopt the

approach by Leijen [2016] and implement a parser combinator library using effect handlers. Our

goal is to parse a list of numbers, while assembling the parser from individual reusable components.

2.1 The Fail Effect
Effect signatures provide the interface of effect operations, but not their implementation. In Effekt,
effect signatures are declared as follows:

effect Fail[A](msg: String): A

The effect operation Fail aborts the current computation with a given message. It is polymorphic

in its return type A so we can use it in any expression position. The following effectful function

converts a string to an integer. It uses the Fail effect to signal that the conversion failed.

def stringToInt(str: String): Int / { Fail } = toInt(str) match {

case Some(n) ⇒ n

case None() ⇒ do Fail("cannot convert input to integer")

}

In case the optional value returned by the builtin function toInt is None(), we use the effect

operation Fail to signal an error. We can freely compose programs that use effects. For instance,

we can use the function stringToInt to convert and then add two numbers:

def perhapsAdd(): Int / { Fail } = stringToInt("1") + stringToInt("2")

The type of function perhapsAdd communicates that it requires the calling context to handle the

Fail effect, although perhapsAdd does not use the Fail effect itself. This requirement arises from

the uses of stringToInt. Handling effects is similar to handling exceptions:

try { perhapsAdd() } with Fail { (msg) ⇒ 0 }

In case any conversion fails, the effect handler for the Fail effect returns 0 as a default value. The

type of the program is Int / {}, it has no unhandled effects, and we can run it to get the result 3.

Capability Passing. Programs in Effekt are translated into a core calculus (System Ξ, Section 4)

that explicitly passes handler implementations to their use site. We refer to these explicitly passed

handler implementations as capabilities. Handlers, like the one for Fail, introduce capabilities,
which are then passed as additional arguments to effectful functions. This can be seen in the

translation of the above example:
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handle { Fail ⇒ perhapsAdd( Fail ) } with { (msg, resume) ⇒ 0 }

Handling Fail introduces an equally named capability, which is passed to perhapsAdd. Section 4.3

will go into more detail, for now it suffices to understand that the Fail capability contains the

handler implementation.

2.2 The Next Effect
Effect handlers generalize exceptions and can express many more effects. Another example is the

Next effect that we will use to work with a pull-based stream of string values:

effect Next(): String

Using Next and Fail, we can express a parser that recognizes a number in the input stream:

def number() : Int / { Next, Fail } = stringToInt(do Next())

The return type of number signals that we can only call it in a context that provides implementations

for both Next and for Fail. We can handle the Next effect by always returning "42", modeling an

infinite stream of strings:

def always42[R] { prog: () ⇒ R / { Next } }: R / {} =

try { prog() } with Next { () ⇒ resume("42") }

This handler implementation illustrates the additional power of effect handlers over exception

handlers: in an effect handler we can call resume to transfer control back to the call-site of the

effect operation. While the handler for Fail did not use resume, in this example we resume the
computation with "42". Since Next returns a string, resume has type String ⇒ R / {}. The
type signature of always42 communicates that it will handle the Next effect on prog. The empty

effect set in the return type signals that always42 itself does not require any effects. Since it is

polymorphic in the result type R, we know that it will call prog and handle the Next effect. Under

our contextual reading, the block passed to always42 can have additional effects that need to be

handled at the call-site of always42. However, the implementation of always42 cannot interfere
with these additional effects.

try { always42 { number() } } with Fail { (msg) ⇒ 0 }

In this example, we handle the two effects Next and Fail that number requires with different

handlers. Running it results in the integer 42. Again, inspecting the translated program makes clear

how effect types correspond to requirements on the caller:

handle { Fail ⇒ always42({ Next ⇒ number( Next , Fail ) }) } with { (msg, resume) ⇒ 0 }

Now, two separate capabilities for Next and Fail are passed to the effectful function number. Note
how the Next capability is introduced by handler always42.

Effect handlers grant flexibility in the interpretation of effect operations. We can define another

handler for the Next effect that reads from a given list.
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def feed[R](input: List[String]) { prog: () ⇒ R / { Next } } : R / { Fail } = {

var remaining = input;

try { prog() } with Next { () ⇒

remaining match {

case Nil() ⇒ do Fail("End of input")

case Cons(element, rest) ⇒ remaining = rest; resume(element)

}

}

}

This alternative handler shows two interesting things: Firstly, it itself uses the Fail effect to signal

an unexpected end of the input stream. Secondly, it uses a mutable variable remaining to keep track
of the position in the input stream. Mutable variables in Effekt are conceptually stack allocated,

which guarantees a well-defined interaction with control effects (Section 6).

2.3 The Choice Effect
The handler for Fail discarded the resumption, the handler for Next called it exactly once. The

third and final example effect illustrates that it can be useful to call the resumption more than
once. For this, we define the effect Choice, which returns a boolean to model the outcome of a

(potentially) non-deterministic choice:

effect Choice(): Boolean

In the Effekt language, we can mix effect operations with other imperative language constructs like

loops and references. For example, we can define a higher-order function many that calls a given
program an unknown number of times, controlled by the Choice effect:

def many { prog: () ⇒ Unit / {} }: Unit / { Choice } = while (do Choice()) { prog() }

We use many to define a parser that reads arbitrarily many numbers and adds them. Note how using

many feels as natural as using the built-in control operator while:

def numbers() = { var res = 0; many { res = res + number() }; res }

The inferred return type of numbers is Int / { Choice, Fail, Next }. Different handlers
for Choice correspond to different search strategies. One possible example handler performs a

backtracking search to find the first success:

def backtrack[R] { prog: () ⇒ R / { Fail, Choice } }: Result[R] / {} =

try { Success(prog()) }

with Fail { (msg) ⇒ Failure(msg) }

with Choice { () ⇒

resume(true) match {

case Failure(msg) ⇒ resume(false)

case Success(res) ⇒ Success(res)

}

}

The handler uses a data type that represents the potentially negative outcome of the search:

type Result[R] { Success(res: R); Failure(msg: String) }
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Handler backtrack handles two effects: Fail and Choice. At each choice, it first resumes with

true and in case of failure resumes a second time with false. Any use of the Fail effect aborts
the current search path with Failure.

2.4 Parsing
Parsers like numbers use the effects Fail, Next, and Choice that we group under an effect alias:

effect Parser = { Fail, Next, Choice }

To handle the Parser effect, we simply reuse the handler implementations from this section:

def parse[R](input: List[String]) { prog: () ⇒ R / Parser }: Result[R] / {} =

backtrack { feed(input) { prog() } }

A parser handles Next by reading from the given list of strings. It handles all failures in prog and

in feed using the implementation of backtracking search. By nesting feed inside of backtrack,
the position in the input stream is automatically correctly backtracked when a choice is resumed a

second time (Section 6). Running the program parse(["1", "2"]) { numbers() } outputs the
number 3.

Section conclusion. Effect handlers generalize exception handlers and offer additional expressivity.

This way, the advanced control flow of programs like numbers can be modularly described in user

defined combinators. Our backtracking implementation corresponds roughly to a hand-written

recursive descent parser with the advantage that the decision for a parsing algorithm is not hard

coded into parsers like numbers. The imperative parser combinators can easily be combined with

other effects like mutable state, exceptions, or even let-insertion [Yallop 2017]. Abstractions like

the many combinator can be shared in a library and reused across different domains.

3 THE LANGUAGE Effekt
In this section, we formally present the syntax and type system of the Effekt language. Section 4 then
introduces the core calculus System Ξ, and Section 5 defines the semantics of Effekt by translation

into System Ξ.

3.1 Syntax
Figure 1 defines the syntax of Effekt. Like other languages with effect handlers [Hillerström et al.

2017] it is presented in fine-grain call-by-value [Levy et al. 2003]. That is, we syntactically distinguish

expressions, which cannot have control effects from statements that can have control effects.

Expressions. Effect safety of Effekt rests on the property that all functions (blocks) are second class.

Consequently, blocks are syntactically neither values nor expressions. Only primitive constants are

values. Similarly, we distinguish syntactically between variables that stand for values (x, y, . . . ) and
variables that stand for blocks (f, g, . . . ). As usual, we follow Barendregt [1992] and require that all

expression variables, block variables, and operation names are globally unique.

Statements. We sequence two statements with val x = s0; s1, where the result of s0 will be bound
to the variable x in s1. The syntactic form def f (x : τ , g : σ ) : τ / ε = s0; s defines a block f ,
binding a fixed, but arbitrary number of value variables x as well as block variables g . As seen
in Section 1, effect types can influence the operational semantics and we thus require the types

of arguments and the return type (e.g., τ / ε) to be annotated. Calling blocks is denoted f (e, g),
providing potentially multiple value arguments as expressions e and block arguments as block

variables g . Without loss of generality, we do not allow passing anonymous blocks and require that

all blocks are named, before passing them to a call. This convention significantly simplifies the
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presentation of the typing rules and the translation. Effect declarations are statements of the form

effect F (x : τ ) : τ ; s , which means that effects can be declared locally. Effect calls (i.e., do F (e))
only take a single expression argument. While the restriction to one argument is insignificant, it is

important that effect operations only take expressions as arguments and never blocks. Otherwise

blocks could escape their scope through the effect operation [Brachthäuser et al. 2020b], violating

effect safety. Finally, the statement try { s } with F { (x : τ ) ⇒ s ′ } expresses that effect calls to
F in the handled statement s will be handled by the handler F { (x : τ ) ⇒ s ′ }. The special block
variable resume is available in the handler implementation s ′.

Syntax:

Statements s ::= val x = s; s sequencing

| e expressions

| def f (x : τ , g : σ ) : τ / ε = s; s block definition

| f (e, g) block call

| effect F (x : τ ) : τ ; s effect declaration

| do F (e) effect call

| try { s } with F { (x : τ ) ⇒ s } effect handling

Expressions e ::= x | v

Expression Values v ::= () | 0 | 1 | ... | true | false | ... primitives

Syntax of Types:

Value Types τ ::= Int | Bool | ...

Block Types σ ::= (τ , σ ) → τ / ε

Effect Sets ε ::= { F1, ..., Fn }

Value Environment Γ ::= ∅ | Γ, x : τ

Block Environment ∆ ::= ∅ | ∆, f : σ

Effect Environment Σ ::= ∅ | Σ, F : τ → τ

Names:

Expression Variables x , y ∈ x, y Block Variables f , g ∈ f, g Operations F ∈ Fail, Choice, ...

Fig. 1. Syntax of the source language Effekt.

Types. The meta variable τ describes value types, which we use to type expressions. The meta

variable σ describes block types, which we use to type blocks. Expressions are first-class, while

blocks are second-class [Osvald et al. 2016]. A block type (i.e., (τ , σ ) → τ / ε) takes expressions
of types τ and blocks of types σ as parameters. The return type τ of a block indicates that only

values (and not blocks) can be returned. The block type also mentions the effects ε that need to be

handled by the caller. Effects ε = { F1, ..., Fn } are (closed) sets of operation names Fi . This is

different from languages that base their effect systems on row polymorphic records where effect

operations can occur multiple times [Leijen 2017c] or effects are annotated with presence/absence

information [Hillerström and Lindley 2016]. Modeling effects as sets greatly simplifies typing as no

special unification rules are needed [Leijen 2005].

3.2 Typing
Figure 2 defines the typing rules of Effekt. To understand the type system, it is important to recall

the interpretation of effect types in Effekt:
Effect types express which capabilities a computation requires from its context.

10
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Statement Typing. Γ
↑

∆
↑

Σ
↑

⊢ s
↑

: τ
↓

ε
↓

Γ ∆ Σ ⊢ s0 : τ0 ε0 Γ, x : τ0 ∆ Σ ⊢ s1 : τ1 ε1

Γ ∆ Σ ⊢ val x = s0; s1 : τ1 ε0 ∪ ε1
[Val]

Γ ⊢ e : τ

Γ ∆ Σ ⊢ e : τ ∅
[Expr]

Γ, x : τ ∆, g : σ Σ ⊢ s0 : τ0 ε ′0 Γ ∆, f : (τ , σ ) → τ0 / ε0 Σ ⊢ s : τ ε

Γ ∆ Σ ⊢ def f (x : τ , g : σ ) : τ0 / ε0 = s0; s : τ (ε ′0 \ ε0) ∪ ε
[Def]

Γ ⊢ e : τ ∆(g) = σ ∆(f ) = (τ , σ ) → τ / ε

Γ ∆ Σ ⊢ f (e, g) : τ ε
[BlockCall]

Γ ∆ Σ, F : τ1 → τ0 ⊢ s2 : τ2 ε2 F ̸∈ ftv(ε2)

Γ ∆ Σ ⊢ effect F (x1 : τ1) : τ0; s2 : τ2 ε2
[Effect]

Σ(F ) = τ1 → τ0 Γ ⊢ e1 : τ1

Γ ∆ Σ ⊢ do F (e1) : τ0 { F }
[EffectCall]

Σ(F ) = τ1 → τ0 Γ ∆ Σ ⊢ s : τ ε
Γ, x1 : τ1 ∆, resume : (τ0) → τ / ∅ Σ ⊢ s ′ : τ ε0

Γ ∆ Σ ⊢ try { s } with F { (x1 : τ1) ⇒ s ′ } : τ (ε \ { F }) ∪ ε0
[Try]

Expression Typing. Γ
↑

⊢ e
↑

: τ
↓ Γ ⊢ n : Int

[Lit]
Γ(x ) = A

Γ ⊢ x : A
[Var]

Fig. 2. Typing rules of the source language Effekt.

This intuition will be useful whenwe discuss the details of the typing rules. There are two judgments,

one for expressions and one for statements.

3.2.1 Expression Typing. The judgment for expressions Γ ⊢ e : τ assigns an value type τ to an

expression e in value environment Γ. Typing of expressions only requires a value environment,

since expressions cannot mention any blocks or effects. Furthermore, since expressions do not have

control effects, expression typing computes a value type τ without any effects. The typing rules for

expressions are completely standard.

3.2.2 Statement Typing. The judgment for statements Γ ∆ Σ ⊢ s : τ ε computes a value type

τ and a set of required capabilities ε for the statement s . It uses three environments, a value

environment Γ, a block environment ∆, and an effect environment Σ. Rule Val types sequencing
of statements. It accumulates all required capabilities of the binding s0 and the body s1 by taking

the union of the corresponding effect sets ε0 and ε1. Rule Expr types an expression statement by

assigning the empty set of effects. Rule Def types block definitions. It is a bit more involved and

requires some explanation. The capabilities a block requires can be provided in two different ways.

Firstly, the block can mention a required effect in its type, which means that the effect is handled

dynamically and the capability needs to be provided by the caller. Secondly, all capabilities that are

not part of the annotated type need to be provided by the context at the definition site of the block.
This can be seen in analogy to term-level variables: free variables in a function body can either be

bound as parameters of the function, or they are bound in the context of the definition site. Hence,

11
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we call this form of handling lexical handling. Rule Def embodies the essence of contextual effect

polymorphism: using type annotations, programmers can control which effects are handled at the

call-site (i.e., ε0), and which effects are free (i.e., ε ′0 \ ε0) and need to be handled at the definition

site of a block. Operationally, as we will see in Section 5, the block will close over the free effects.

Since all complications are part of rule Def, typing block calls (rule BlockCall) takes a familiar

form, simply checking whether the argument types conform to the annotated parameter types. The

decision whether effects of (anonymous) block arguments are handled dynamically or lexically is

clear from the types at their definitions.

Example 1.
The following example illustrates how the Def rule enables contextual effect polymorphism:

def optionally { prog: () → Int / { Fail } }: Option[Int] / {} = ...;

optionally { () ⇒ if (do Choice()) do Fail("failed") else 42 }

We desugar this example to bind the block to a fresh name anon with exactly the type of the block

parameter of optionally.

def optionally { prog: () → Int / { Fail } }: Option[Int] / {} = ...;

def anon(): Int / { Fail } = if (do Choice()) do Fail("failed") else 42;

optionally(anon)

The example program has the overall type Option[Int] / { Choice }. The required capability

Fail is provided by function optionally, while Choice is free and has to be provided by the context

of the definition of anon.

The last three rules are concerned with effect declaration, use, and handling. Rule Effect extends

the effect environment Σ, bringing the effect operationF into scope. The side-conditionF ̸∈ ftv(ε2)
corresponds to the standard check that type variables should not leave the scope in which they are

defined [Eisenberg et al. 2018]. Symmetrically, rule EffectCall requires the effect to be lexically in

scope when an effect operation is used. Interestingly, in our capability-oriented formalization, this

simple check suffices to express locally defined effects, where other languages require sophisticated

use of existential quantification [Biernacki et al. 2019]. Lastly, rule Try types handling of effects.

The handled statement s is assigned return type τ and effects ε . In Effekt, after typing s , the
handled effect is subtracted from the resulting set of effects ε . This, again, is an important difference

compared to languages based on row polymorphism [Leijen 2017c] where, by unification, the effect

type of s would necessarily include F . The body of the handler s ′ can assume that the variable x1
has type τ 1 and that the block variable resume has type (τ 0) → τ / ∅. The latter might come with

surprise: one might expect that the continuation still has effects. However, recalling our contextual

reading of effects, we can see that resume is merely contextually pure. All effects in resume are
handled outside the corresponding try statement. In particular, the body of the operation clause

does not have to (and even cannot) handle any effects in resume. Typing the continuation with the

empty set of effects is safe since it is a block and cannot leave the scope of its definition. Finally,

the resulting set of effects is the set of effects ε of the handled statement, without F , but including

all effects used by the effect operation ε0.

4 THE CORE LANGUAGE System Ξ

To specify the semantics of Effekt, we translate it to a core language: System Ξ. This section presents
its syntax and type system, sketches its operational semantics, and states semantic soundness.

Section 5 then defines the translation fromEffekt to System Ξ and shows it preserveswell-typedness.

Effect safety of Effekt follows as a corollary. The full operational semantics, as well as detailed

12
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Syntax of Terms:

Statements s ::= val x = s; s sequencing

| e expressions

| def f = b; s block definition

| b(e, b) block call

| handle { F ⇒ s } with { (x , k ) ⇒ s } handler

Expressions e ::= x | v

Expression Values v ::= () | 0 | 1 | ... | true | false | ... constants

Blocks b ::= f | w

Block Values w ::= { (x : τ , f : σ ) ⇒ s }

Syntax of Types:

Value Types τ ::= Int | Bool | ...

Block Types σ ::= (τ , σ ) → τ

Value Environment Γ ::= ∅ | Γ, x : τ

Block Environment ∆ ::= ∅ | ∆, f : σ

Names:

Expression Variables x , y ∈ x, y Block Variables f , g , k , F ∈ f, g, k, Fail, Choice, ...

(a) Syntax of System Ξ.

Type Rules:

Statement Typing. Γ ∆ ⊢ s : τ
Γ ∆ ⊢ s0 : τ0 Γ, x : τ0 ∆ ⊢ s1 : τ1

Γ ∆ ⊢ val x = s0; s1 : τ1
[Val]

Γ ⊢ e : τ

Γ ∆ ⊢ e : τ
[Expr]

Γ ∆ ⊢ b : σ Γ ∆, f : σ ⊢ s : τ

Γ ∆ ⊢ def f = b; s : τ
[Def]

Γ ∆ ⊢ b : (τ , σ ) → τ0 Γ ⊢ e : τ Γ ∆ ⊢ b : σ

Γ ∆ ⊢ b(e, b) : τ0
[Call]

Γ ∆, F : τ1 → τ0 ⊢ s : τ Γ, x : τ1 ∆, k : τ0 → τ ⊢ s ′ : τ

Γ ∆ ⊢ handle { F ⇒ s } with { (x , k ) ⇒ s ′ } : τ
[Handle]

Block Typing. Γ ∆ ⊢ b : σ

∆(f ) = σ

Γ ∆ ⊢ f : σ
[BlockVar]

Γ, x : τ ∆, f : σ ⊢ s0 : τ0

Γ ∆ ⊢ { (x : τ , f : σ ) ⇒ s0 } : (τ , σ ) → τ0
[Block]

Expression Typing. Γ ⊢ e : τ
Γ(x ) = τ

Γ ⊢ x : τ
[Var] Γ ⊢ n : Int

[Lit]

(b) Type system of System Ξ – typing rules for runtime extensions can be found in Appendix A.2.

Fig. 3. Syntax and type system of System Ξ.

13
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proofs can be found in Appendices A.1 to A.4. We have mechanized the type system and operational

semantics of System Ξ in the dependently typed programming language Idris [Brady 2013]. Our

implementation of Effekt closely follows the translation presented in Section 5.

4.1 Syntax
Figure 3a defines the syntax of System Ξ. Like Effekt, the core language is in fine-grain call-by-

value. Also like Effekt, it distinguishes expressions e and blocks b. Unlike Effekt, however, the
core language supports effect handlers in explicit capability-passing style. That is, effect operations
are represented by blocks, which are introduced by the corresponding handler and passed as

additional arguments. As a consequence, System Ξ does not distinguish between named blocks

(that is, function definitions), anonymous blocks, and effect operations – all three are represented

by the syntactic category of blocks b. Blocks b can either be block variables f or block values w of

the form { (x : τ , f : σ ) ⇒ s }. Note how block variables (e.g., Choice or Fail) in System Ξ may

have the names of effect operations in Effekt. Local blocks are defined with def f = b; s , binding

block b to the name f in scope of the statement s . Block calls in System Ξ, of the form b(e, b),
subsume block and effect calls of Effekt. Arguments can be an arbitrary number of value arguments

and block arguments. Finally, the handle statement handle { F ⇒ s } with { (x , k ) ⇒ s ′ } binds
the block variable F in the handled statement s . The value parameter x and the continuation block

k are bound in the handler implementation s ′.

4.2 Typing
The typing rules of System Ξ are defined in Figure 3b. Like the source language, System Ξ distin-

guishes between two kinds of types: value types τ and block types σ . Importantly, block types now

do not mention any effects, but only map value- and block parameter types to a resulting value

type τ . Furthermore, inspecting the type system of System Ξ, we can see that it does not include

an effect system. Effect safety is simply established by treating blocks as second class. The type

system of System Ξ has three judgments, one for each syntactic category. Statements and blocks

are typed against two environments: environment Γ for value variables and environment ∆ for

block variables. Since effects are translated to blocks, the signature environment Σ is not required

anymore. Besides distinguishing between values and blocks and using separate environments,

the typing rules for sequencing (Val), expressions in statement position (Expr), block definitions

(Def), and block calls (Call) are completely standard. They correspond to the rules of Effekt but
without any tracking of effects. Rule Handle is central to the calculus. We handle statement s with
the handler implementation s ′. The handler introduces a capability and binds it to the operation

name F , which is brought into scope as a block variable in the handled statement s . In the handler

implementation s ′, the parameter of the effect operation x has type τ 1 and the continuation k is

an ordinary block variable of type τ 0 → τ . The (answer) type τ appears four times in this rule: As

the return type of the overall statement, the return type of the handled statement, the result type

of the continuation, and the return type of the handler implementation – all have to agree.

4.3 Operational Semantics
We give the semantics of System Ξ as a small-step operational semantics using evaluation con-

texts [Wright and Felleisen 1994]. To allow capturing and resuming continuations, the semantics

of System Ξ follows the generative semantics presented by Biernacki et al. [2020], who in turn

present a variant of multi-prompt delimited control [Gunter et al. 1995]. Like previous presenta-

tions of effect handlers [Kammar et al. 2013], capturing a continuation removes the corresponding

delimiter and resuming reinstalls the delimiter. This corresponds to a multi-prompt variant of the
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control operator shift0 [Danvy and Filinski 1989]. Our presentation requires two additional runtime

constructs that only appear during evaluation: delimiters and capabilities.

Labels. Both runtime constructs refer to unique runtime labels l , generated during reduction.

We only require that labels can be compared for equality and that we are able to generate fresh

labels at runtime. In this paper, we represent concrete labels as hexadecimal hashes (e.g., @a5f) to
highlight that they are created at runtime.

Delimiters. The additional statement #l { s } represents a delimiter that delimits a statement s
at a given label l (or prompt in the terminology of Felleisen [1988], Sitaram [1993], and Gunter et al.

[1995]).

Capabilities. The additional block value capl { (x , k ) ⇒ s } represents a capability, which is

a pair of a label l and a handler implementation s [Brachthäuser and Schuster 2017]. Calling a

capability captures the stack segment up to the next dynamically enclosing delimiter for the label l ,
reifies it as a continuation, and binds it to k .

4.3.1 Reduction Rules. The presentation of the operational semantics follows Gunter et al. [1995]

and is based on delimited evaluation contexts Hl (definition is given in the Appendix A.1) where the

label l does not appear in any delimiters in Hl . It is used to guarantee that captured continuations

are always delimited by the dynamically closest delimiter for a label. Here we only give the most

important reduction rules – the full description of the operational semantics, as well as the extension

of the type system to account for the additional runtime constructs can be found in Appendix A.2.

Handling introduces delimiters. Rule (handle) creates a fresh runtime label l , delimits the handled

statement s with this label, and substitutes a capability that refers to l for the block variable F .

(handle) handle { F ⇒ s } with { (x , k ) ⇒ s ′ } −→ #l { s[F 7→ capl { (x , k ) ⇒ s ′ }] } where l fresh

Since the label is fresh, the capability is only valid in the dynamic region delimited by #l . Calling

the capability outside of the region will lead to a stuck term. Our semantics is generative: reducing
the same handle statement twice will introduce two distinct runtime labels [Biernacki et al. 2020].

Capabilities capture the continuation. The most interesting rule (cap) captures part of the context:

(cap) #l { Hl [ (capl { (x , k ) ⇒ s })(v ) ] } −→ s[x 7→ v , k 7→ { y ⇒ #l { Hl [ y ] } }]

The application of a capability to a value (e.g., (capl { (x , k ) ⇒ s })(v )) itself is not a redex. This
highlights the essence of control effects: they depend on (and modify) the context they are evaluated

in. The application of a capability with label l is only meaningful in a context, which is delimited at

label l . This becomes visible in rule (cap), where the delimiter#l , the delimited context Hl , and the

capability application together form a redex. We reify this context as a continuation and substitute

it (as well as the argument v ) in the body of the handler implementation. Effect safety means that

applications of a capability with label l only occur in a context with a delimiter at l (Theorem 4.2).

Only values can leave delimiters. Once a statement is reduced to a value, delimiters are discarded:

(ret) #l { v } −→ v

Since blocks (and capabilities) are no expression values, they cannot be returned.

Example 2.
The following example illustrates the operational semantics of capturing continuations. We assume

an effect operation ∆(Yield) = Int → Int.

handle { Yield ⇒ val x = Yield(20); x ∗ 2 } with { (x, k) ⇒ k(x + 1) }
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Reducing handle introduces a fresh label (e.g., @a1) and uses it to delimit the handled program. It

also introduces a capability and substitutes it for Yield:

#@a1 { val x = (cap@a1 { (x, k) ⇒ k(x + 1) })(20); x ∗ 2 }

Applying rule (cap), we obtain (captured stack segment highlighted in gray ):

k(20 + 1) where k = { y⇒ #@a1 { val x = y; x ∗ 2 } }

Further reducing the application results in

#@a1 { val x = 21; x ∗ 2 }

where we proceed to reduce under the delimiter to obtain #@a1 { 42 }, and finally remove the

delimiter to get the result 42. As can be seen from the example, capturing the continuation removes

the corresponding delimiter #@a1 and calling the continuation reinstalls it. This treatment of

delimiters together with capability passing models deep handlers [Kammar et al. 2013].

4.4 Soundness
In our mechanized formalization, we represent System Ξ terms by their typing derivations [Benton

et al. 2012] and show progress constructively by implementing the semantics as a total step function.

One important class of stuck terms are capability applications without a corresponding delimiter.

Definition 4.1 (Undelimited Label). A statement s contains an undelimited label l , if it has the
form Hl [(capl { (x , k ) ⇒ s ′ })(v )].

In our operational semantics, reducing a redex never produces a newly undelimited label. In the

type system for System Ξ extended with runtime constructs (Appendix A.2), we add an additional

label context Ξ to the typing judgement, which now has the form Γ ∆ Ξ ⊢ s : τ . All typing

rules in Figure 3b ignore Ξ and simply pass it to the premises. We use this label context in our

proof to formally capture this invariant.

Starting from an empty label context, closed and well-typed System Ξ programs either are values

or we can take a step. Here the relation 7−→ describes congruence, that is, reduction under a context.

Theorem 4.2 (Progress of System Ξ). If ∅ ∅ ∅⊢ s : τ , then s is a value v or s 7−→ s ′.

Our mechanized formalization establishes preservation by indexing System Ξ programs with their

type. Performing a reduction step on a statement preserves its type:

Theorem 4.3 (Preservation ofSystem Ξ). If ∅ ∅ ∅⊢ s : τ and s 7−→ s ′ then ∅ ∅ ∅⊢ s ′ : τ .

In particular, reduction also preserves the (empty) label context. That is, from progress and preser-

vation follows effect safety: programs are never stuck on an undelimited label.

5 TRANSLATION OF Effekt TO System Ξ

Having introduced both Effekt and System Ξ formally, we now show how to make the flow of

capabilities explicit by translating Effekt into System Ξ, i.e. into explicit capability-passing style.
The translation is type directed and operates on typing derivations. Intuitively, where in Effekt
the effect types indicate that a computation requires capabilities to be available in its context,

in System Ξ we explicitly pass such capabilities as additional arguments. Figure 4 defines the

translation. The translation is defined on types and on statements. We neither translate expressions,

nor their types, since the language of expressions is the same in Effekt and System Ξ.

Translation of types. We translate blocks that require a set of effects { F1, ..., Fn } to blocks

that receive n additional block arguments – one for each member of the set. The translation of

16



Effekt: Lightweight Effect Polymorphism for Handlers Technical Report, 2020, University of Tübingen

Translation of Block Types and Effect Types:

T J (τ , σ ) → τ0 / { F1, .... Fn } K = (τ , T JσK, T JF1K, ..., T JFn K) → τ0
T J F K = (τ1) → τ0
where Σ(F ) = τ1 → τ0

T J {F1, ..., Fn } K = F1 : T JF1K, ..., Fn : T JFn K

Translation of Statements:

SJ val x = s0; s1 K = val x = SJ s0 K; SJ s1 K

SJ e K = e
SJ def f (x , g) : τ0 / ε0 = s0; s K = def f = { (x , g , F1, ..., Fn ) ⇒ SJ s0 K }; SJ s K

where ε0 = { F1, .... Fn }

SJ f (e, g) K = f (e, g , F1, ... Fn )

where f : (τ , σ ) → τ0 / { F1, ... Fn }

SJ effect F (x1 : τ1) : τ0; s K = SJ s K
SJ do F (e1) K = F (e1)
SJ try { s } with { F (x ) ⇒ s ′ } K = handle { F ⇒SJ s K } with { (x , resume) ⇒ SJ s ′ K}

Fig. 4. Translation of Effekt to System Ξ – we assume a canonical ordering of effects in ε .

effect sets to additional arguments can be seen in the translation of block types, of block definitions,

and of block calls. Names of operations in Effekt are now names of block variables in System Ξ.
For the translation, we assume a canonical ordering of effects in each ε . In our implementation, it

suffices to choose an arbitrary but fixed ordering for each type signature. The translation of types

extends to environments and sets of effects. In particular, we translate the sets of effects ε of Effekt
into block environments ∆ of System Ξ translating each effect operation to a binding in the block

environment. We assume that names of blocks and names of effect operations are disjoint and no

name conflicts arise.

Translation of terms. The translation of block definitions uses type information to add additional

capability parameters to the block f . Symmetrically, the translation of application adds additional

arguments. Assuming Σ(Fail) = (String) → Int, the program of Example 1 translates to:

def optionally = { (prog : ((String) → Int) → Int) ⇒ ... }
def anon = { (Fail : (String) → Int) ⇒ if (Choice()) then Fail(”failed”) else 42 }

optionally(anon)

Effect calls translate to ordinary block calls, where the name of the called block is the same as the

name of the effect operation (e.g., Choice or Fail). The effect system of Effekt and the translation

guarantee that a block with the name of the effect operation is in scope. Effect types and their

declarations disappear during translation. Translating the try statement of Effekt into the handle
statement of System Ξ makes two things explicit: Firstly, the handle statement now explicitly

binds the capability F as a block in the handled statement s . Secondly, the continuation resume is
bound explicitly as a block variable in the body s ′.

5.1 Well-typedness Preservation
The translation fromEffekt to System Ξ in explicit capability-passing style preserveswell-typedness:

Theorem 5.1 (Translation preserves well-typedness).

If Γ ∆ Σ ⊢ s : τ ε , then Γ T J∆K + T JεK ∅ ⊢ SJsK : τ .
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Proof. Straightforward induction over the typing derivations (see Appendix A.4). □

The translated program SJ s K is valid under the empty label context Ξ = ∅, i.e. does not contain
any undelimited labels. This is obvious as the translation (Figure 4) never introduces any labels,

delimiters, or capabilities. Those are only introduced at runtime by reducing handle statements.

5.2 Semantic Soundness of Effekt
We define the semantics of Effekt as the composition of the translation to System Ξ and the

semantics of System Ξ. This presentation emphasizes our capability-based understanding of effects

by translating them to explicitly passed blocks. Semantic soundness (that is, effect safety) of Effekt
directly follows from preservation of well-typedness (Theorem 5.1) and soundness of System Ξ.
We can identify two potential sources of runtime errors that would violate effect safety:

Unhandled effects. Effects in Effekt might be unhandled, that is there is no enclosing effect

handler that would handle the effect. In our translation, effect operations are translated to block

calls. Unhandled effects thus correspond to unbound block variables. The type-system of System Ξ
and well-typedness preservation guarantees that such programs cannot be expressed.

Escaping capabilities. Effects are translated to capabilities and those contain labels. Those capabil-

ities could (accidentally) leave the scope of the corresponding delimiter, leading to a runtime error.

However, this is ruled out by preservation (Theorem 4.3) of System Ξ. Furthermore, the translation

does not introduce any delimiters or uses runtime labels in any other way.

6 PRACTICAL EVALUATION
To evaluate the design of Effekt, we implemented a compiler from Effekt to JavaScript. The evalua-

tion aims to establish feasibility of a language implementation, practically investigate expressivity

and severity of the restrictions imposed by the language design, explore the interaction with

(seemingly orthogonal) extensions to the language, evaluate the integration with a target language

like JavaScript (via foreign function interfaces), practically evaluate effect inference in combination

with bidirectional typechecking, and finally further explore the design space and extensions with

additional interesting features. Our implementation scales the presented calculus Effekt to a fully

fledged language. Among others, it features algebraic data types, (nested) pattern matching, value

polymorphism, type directed overloading, local (backtrackable) mutable state, and a foreign func-

tion interface to JavaScript. We used the language implementation to develop multiple, medium

sized case studies. In this section, we describe the language implementation, discuss differences to

the formal presentation of Effekt, and elaborate on our experience in using Effekt to implement the

case studies. The language implementation, an implementation of a Visual Studio Code plugin, as

well as the documented case studies can be found in the repository accompanying this paper
4
.

6.1 Description of the Implementation
Our implementation of Effekt is based on the translation to System Ξ as presented in this paper.

Additionally, the compiler then translates System Ξ to a subset of JavaScript using a library im-

plementation of monadic delimited control [Dybvig et al. 2007]. The implementation of the Effekt
language spans around 7.000 lines of code, while the monadic JavaScript runtime system only

comprises around 150 lines of code.

4https://github.com/effekt-lang/effekt
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const usercode =
handle([{

"op$Exception": resume ⇒ println("empty line")
}])(Exception ⇒

eachLine(someFile, (line) ⇒
(line == "") ? Exception.op$Exception()

: pure(unit)))

(a) JavaScript code generated for the running example from
Section 1.

(b) Warnings facilitate the development of
programs using effects and handlers.

Fig. 5. Practical aspects: compilation output and IDE integration.

6.1.1 Generated JavaScript Code. To get an impression of the generated JavaScript code, Figure 5a

shows the result of translating the user program of our running example. The JavaScript code is in

explicit capability-passing style. The library function handle takes the handler implementation

and introduces a capability Exception in the body, which is passed as second argument. The

resulting code also shows the use of the library for monadic delimited control [Brachthäuser et al.

2020b; Dybvig et al. 2007]. Pure values without control effects are embedded into the monad by

calling pure. Programs like usercode can be executed with usercode.run(). Since JavaScript is
call-by-value, our library implementation additionally includes a function delay that expects a

computation without control effects, but with potential side effects of the target language. It defers

the side effects until they are forced by corresponding call to run().

6.1.2 IDE Support for Effects and Handlers. For our practical evaluation, we implemented a Visual

Studio Code extension. In addition to the usual features of IDEs (like error reporting or jumping to

definitions), two features proved to be particularly useful to develop effectful programs: Firstly, while

inferring return types (and effects) of functions facilitates refactorings and allows programmers to

use additional effects without having to change the signatures, displaying the inferred effects in

the IDE heavily improves program understanding. Secondly, the contextual effect system of Effekt
makes it very convenient to work with higher-order effect polymorphic functions. Sometimes, we

experienced that the effect system is actually too convenient to use: As illustrated in Section 1,

changing the type signature of a function influences which effects are handled. These changes might

go unnoticed at the call-site and lead to correct, but potentially unexpected behavior. Programmers

might assume one particular handler to handle an operation, while that handler is shadowed by a

syntactically closer one. To address this, we added warnings as illustrated in Figure 5b that guide

the user in writing effectful code.

6.2 Differences to the Calculus
There are some differences between the calculus presented in this paper and its implementation,

mostly additional language features. For example, the implementation adds algebraic data types and

pattern matching. Importantly, constructors can only take value arguments, no block arguments.

The implementation also adds value type polymorphism. That is, while Effekt does not include
parametric effect polymorphism, parametric polymorphism for value types is supported. There is

no interesting interaction, since the universes of blocks, effects, and values are strictly separated.

6.2.1 Builtin Effects. The implementation of Effekt separates user defined effects representing

control effects (as presented in Section 2) from builtin effects, such as printing to a console or

accessing the network. Like user effects, builtin effects are tracked by the effect system, however,

they cannot be handled by users and simply propagate to the top level (that is, the main function).

In consequence, programs with unhandled builtin effects can be executed, while the type checker
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prevents programs with unhandled user-defined effects from being evaluated. Since builtin effects

do not capture the continuation and cannot be handled by users, they also do not require capability

passing. The implementation selectively only performs capability passing for user-defined effects.

6.2.2 Local Mutable State. Algebraic effects have been conceived in the setting of functional

programming. Yet, Effekt supports a number of “imperative” features such as iteration with while
and local mutable state. In presence of control effects, the latter is particularly interesting. Let us

assume the example on the left, which is adapted from Brachthäuser et al. [2020b]:

try {
var x = 0
if (do Choice()) { x = 2 } else { () }
println(x)

} with Choice { () ⇒

resume(true); resume(false)
}

var x = 0
try {
if (do Choice()) { x = 2 } else { () }
println(x)

} with Choice { () ⇒

resume(true); resume(false)
}

Here, the Choice effect (Section 2) is handled by first resuming with true and then resuming again

with false. In Effekt, mutable variables are treated as effects local to the scope they are declared

in and var x = 0; s can be understood as state(0) { x ⇒ s }. Since the Choice effect is

handled outside of the scope, the example prints 2 and then 0, which corresponds to separately

evaluating the two paths of control flow. Changing the example to the one on the right, which

is nested differently, it now prints 2 twice. The change to 2 persists between the two executions

since variable x is defined outside of the handler for Choice. The implementation of local mutable

state in Effekt follows Brachthäuser et al. [2020b] who in turn build on the work by Kiselyov et al.

[2006]: The monad for delimited control is extended by also storing state frames on the stack. On

continuation capture, the state is copied and on a call to the continuation it is restored. This way, it

is guaranteed that we get the expected interaction between mutable state and delimited control.

6.3 Case Studies
To practically evaluate the language design of Effekt and to analyze the severity of the limitations

imposed by treating blocks as second class, we implemented several medium sized case studies. The

implemented case studies range over various domains from language implementation techniques

(such as lexing, parsing, tree transformations, and pretty printing), over build systems [Mokhov

et al. 2018], to natural language DSLs [Maršík and Amblard 2016]. We also implemented many

small examples from domains such as pull and push-based streams, probabilistic programming,

and automatic differentiation. Here, we report on our experience in developing those case studies,

describe encountered limitations and workarounds, and highlight interesting examples related to

effect polymorphism and second-class values. We use Koka as a point of comparison, but most of

the concepts we illustrate also apply to other languages with row-polymorphic effects and handlers.

6.3.1 Lexer: Pull-based Streams. Based on the motivating example from Section 2.2, in our case

studies we implement a lexer effect with the signature on the left. Like in Koka [Leijen 2017c],

effect signatures in our implementation of Effekt can group multiple effect operations.

effect Lexer {
def peek(): Option[Token]
def next(): Token

}

try {
var index = 0;
def eos(): Boolean = index ≥ in.length
...

} with Lexer { ... }
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Instead of feeding tokens from a given list, we implemented a handler for the Lexer effect that

analyses a given input string. The handler uses a local mutable reference index to store the current
position in the string. It also makes extended use of local function definitions, such as eos on

the right, which close over index. In Koka, the type checker would reject the program on the

right, since the type annotation on eos with the empty effect set does not match the expected

type, which in Koka is local<_h> Boolean. The Koka language translates mutable variables and

references to a synthesized state effect (such as local<_h>). Built around row-polymorphism,

the details of this encoding and the corresponding synthesized effects leak into the type of user

programs [Leijen 2018a]. In contrast, Effekt builds on second-class functions to achieve the same

safety. In consequence, there is no such “State” effect that could leak to the user, making it much

more natural to work with locally defined effects in general and with local variables in particular.

Recalling the typing rule Def (Section 3.2): all effects that are not mentioned on a block must be

handled at the definition site of the block. This is safe, since the block eos cannot leave the scope

of its definition.

6.3.2 Parser. As illustrated in Section 2.4, we can use our extended implementation of lexers to

describe parsers and our case studies expand on this idea. Modeling parsers with effects allows us

to implement the parsing strategy in the handler. For instance we can describe depth-first strategies

which enumerate either only the first, or all possible results. However, the restriction of blocks to

be second-class prohibits us from writing handlers for breadth-first strategies [Brachthäuser et al.

2020b]. To implement breadth-first parsers, it would be necessary to store continuations in a queue.

However, since continuations are blocks and blocks are second class, we cannot do this in Effekt.

6.3.3 ANF-Transformation. By giving us access to delimited continuations, effect handlers help us

to express structured tree transformations. For example, we can implement a transformation of

expression trees into A-normal form. Let us assume data types for the abstract syntax of a language

that explicitly distinguishes between effectful statements (Stmt) and pure expressions (Expr).

effect Fresh(): String
effect Bind(stmt: Stmt): Expr

def bindHere { prog: Stmt / Bind } : Stmt / Fresh =
try { prog() }
with Bind { (stmt) ⇒

val id = do Fresh()
Let(id, stmt, resume(Var(id)))

}

We can use the Bind effect operation to locally transform a statement into an expression. The

handler bindHere handles the Bind effect by generating a fresh variable and inserting a binder for

the provided statement stmt. In Koka, the inferred type of bindHere would be

forall<e> (prog : () → <fresh,bind|e> int) → <fresh|e> int

Here we can see again two important differences: First, Koka uses parametric effect polymorphism

and thus quantifies over the effect row e. Second, by use of row polymorphism and ML-style

unification, the use of Fresh in the handler propagates into the type of the argument prog. As we
discuss in Section 7.1.2, this breaks effect encapsulation since it leaks (effect-)implementation details

into the signature.

6.3.4 Pretty-Printer. Similar to how parsers can be implemented by backtracking search, we can

also use effects and handlers to describe pretty printers. In an extended case study, we implemented

a pretty printing library that conceptually resides between the imperative presentation of Oppen

[1980] and the functional presentation of Swierstra and Chitil [2009]. It combines multiple different

uses of effects, such as effects for dynamically bound variables [Brachthäuser and Leijen 2019],
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backtracking search, and writing to an output stream. For example, we use effects to abstract over

the indentation level and the layouting direction, which are context dependent.

type Direction {
Horizontal();
Vertical()

}
effect Indent(): Int
effect DefaultIndent(): Int
effect Flow(): Direction

def direction[R](dir: Direction) { doc: R / Flow }: R =
try { doc() }
with Flow { () ⇒ resume(dir) }

def horizontal { p: Unit / Flow }: Unit =
direction(Horizontal()) { p() }

The effect Flow represents the current layouting direction and the effect Indent represents the

context-dependent indentation level. To express the handler horizontal on the right, it would be

convenient to partially apply the direction function such as:

val horizontal = direction(Horizontal()) // ERROR

However, in Effekt this is not possible since functions cannot be returned. As a commonly encoun-

tered workaround, we have to η-expand the definition of horizontal. To express pretty printers,

we use two additional effects. An effect to output the rendered document (Emit) and an effect for

choice-points in the layout (LayoutChoice).

effect Emit {
def text(content: String): Unit
def newline(): Unit

}

effect LayoutChoice {
def fail[A](): A
def choice(): Direction

}

The LayoutChoice effect is very similar to the non-determinism effect with Fail and Choice from
Section 2. As an example, the pretty-printing combinator group [Swierstra and Chitil 2009] uses

non-deterministic choice to decide the layouting direction of a document.

def group { p: Unit / Flow } =
direction(choice()) { p() }

def line() = do Flow() match {
case Horizontal() ⇒ text(" ")
case Vertical() ⇒ newline()

}

Using group and line we can define conditional linebreaks as group { line() }, which inserts a

linebreak if the remainder does not fit into the available space. Finally, we assemble the handler

pretty for pretty printed document descriptions from multiple other handlers.

def searchLayout[R] { p : R / LayoutChoice }: Option[R]

def writer { p: Unit / Emit }: String

def printer {

prog: Unit / { Emit, Indent, DefaultIndent, Flow }

} : Unit / { Emit, LayoutChoice }

effect Pretty = { Emit, Indent, DefaultIndent, Flow, LayoutChoice }

def pretty { doc: Unit / Pretty }: Option[String] =

searchLayout { writer { printer { doc() } } }

Again, in Koka the above would not typecheck. The signature of printer would be polymorphic in

an effect row e.

forall<e> (() → <emit,indent,defaultIndent,flow|e> int) → <emit,layoutChoice|e> int
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Since doc can use LayoutChoice in addition to effects that are explicitly mentioned in the type of

prog, at the callsite of printer the row variable e would be instantiated to LayoutChoice. In con-

sequence, the inferred type of the call to printer is <emit, layoutChoice, layoutChoice> ().
It contains two copies of LayoutChoice in its row. Only one copy is handled by searchLayout
and the overall type of pretty thus still mentions LayoutChoice! We can resolve this problem

by adding LayoutChoice to the type of prog in the signature of printer. But this is a change to
the definition of printer that is motivated by a particular use of printer, and the signature of

printer would then say that its implementation could handle the LayoutChoice effect, which it

does not do. While it is sometimes possible to resolve problems like this by changing type signatures

of involved functions or by advanced use of term level adjustments [Convent et al. 2020; Leijen

2018a], lexically scoped effects and contextual effect polymorphism in Effekt avoid this class of

problems altogether.

6.3.5 Automatic Differentiation. The restriction to second-class blocks implies that blocks can

neither be returned from functions, nor can they be stored in data structures. One common use of

the former is curried application. A common workaround is to η-expand the definition. In order to

allow storing blocks in data structures, one can manually perform defunctionalization. While in

some cases this is a viable approach, some application domains inherently rely on function spaces.

One example of such a domain is automatic differentiation (AD). Wang et al. [2019] propose

to use delimited continuations to implement reverse-mode AD. While the presented techniques

readily carry over to effect handlers (and can be applied in Effekt), in this domain it would be

natural to talk about functions as a first-class concept. For example, one could try to implement a

handler grad that takes a function Num ⇒ Num / AD, which uses the AD effect, to its derivative.

def grad { prog: Num ⇒ Num / AD } : Double ⇒ Double

The returned function would close over prog which could have arbitrary other effects. In Effekt,
this is not possible and we have to define grad with the following signature:

def grad(in: Double) { prog: Num ⇒ Num / AD } : Double

Another domain that suffers from a similar restriction is probabilistic programming. While effect

handlers have been shown to be suitable to modularize the description of models and inference

algorithms [Bingham et al. 2019; Moore and Gorinova 2018; Phan et al. 2019], models are typically

represented by functions and it is necessary to treat them as first class. Manual defunctionalization

of models is possible in some cases but requires work and the result is less natural.

7 DISCUSSION AND RELATEDWORK
In this paper, we introduced a language with effect handlers, based on a new reading of effect types

as contextual requirements. In this section, we compare Effekt with other implementations of effect

handlers and discuss prior work related to the contextual reading (summarized in Figure 6).

7.1 Effect Handlers
Section 2 illustrated that, despite the different reading of effect types, programming in Effekt
with first-order functions is not much different from programming in other languages with effect

handlers. However, for higher-order functions we can observe significant differences. Let us assume

the following implementation for our motivating example from Section 1.
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Effect Capture- Effect Encapsulation Contextual
Safe free Handlers without Lifts Effect Polym.

Effect handlers without static checks
Plotkin and Pretnar [2013] ✗ ✗ ✓ — —

Dolan et al. [2017] ✗ ✗ ✓ — —

Brachthäuser and Schuster [2017] ✗ ✓ ✓ — —

Effect handlers with static checks
Bauer and Pretnar [2013] ✓ ✓ ✓ — —

Leijen [2017c] ✓ ✓ ✓ ✗ ✗

Lindley et al. [2017] ✓ ✓ ✓ ✗ ✗

Hillerström and Lindley [2016] ✓ ✓ ✓ ✗ ✗

Lexical effect handlers with static checks
Zhang and Myers [2019] ✓ ✓ ✓ ✓ ✗

Brachthäuser et al. [2020b] ✓ ✓ ✓ ✓ ✗

Biernacki et al. [2020] ✓ ✓ ✓ ✓ ✗

Second-class values
Osvald et al. [2016] ✓ — ✗ ✓ ✓

Zhang et al. [2016] ✓ ✓ ✗ ✓ ✓

Effekt ✓ ✓ ✓ ✓ ✓

Fig. 6. Summary of related work.

def eachLine(file: File) { f: String ⇒ Unit / {} }: Unit / { FileIO, Console } =

try {

while (hasNext(file)) { f(nextLine(file)) }

} with Exception { () ⇒ println("error reading file") }

The implementation of eachLine handles exceptions that arise from the interaction with files via

hasNext and nextLine by printing an error message.

7.1.1 Accidental Capture. In our motivating example the block passed to eachLine used exceptions:

eachLine { (line) ⇒ if (line == "") { do Exception() } else { ... } }

What happens if the file indeed does contain an empty line? In many languages with support for

exception handling (like Java, JavaScript, OCaml, and others) the exception will be caught by the

dynamically closest handler. This example would thus print "error reading file". For the user
of eachLine this might come as a surprise, as she would have expected it to print "empty line".
This behavior exposes an implementation detail of eachLine, which is clearly undesirable. We

call this behavior accidental capture, since the type of eachLine does not mention Exception and

eachLine should not be able to intercept exceptions.

Zhang et al. [2016] propose a solution to avoid accidental capture in the context of exceptions

in Java-like languages. They distinguish between code that is aware of a certain exception and

oblivious code. Only code that is aware of an exception can handle them, exceptions are tunneled
otherwise. They also translate methods that throw exceptions to receive and pass along an additional

parameter that will be a label at runtime, similar to labels in System Ξ. Furthermore, they also

distinguish first-class (precise) and second-class (imprecise) functions and prevent the latter ones

from being returned. Their calculus features parametric effect (i.e., label) polymorphism, which

is inferred and hidden from the user. To achieve this, they use intraprocedural program analysis
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to solve constraints arising from the use of exceptions and handlers and generalize at procedure

boundaries. Their type system is strictly more general, as it allows for first-class functions when

they are safe to use, but arguably also more complicated. While they are concerned solely with

exceptions, in this work we are concerned with the more general concept of effect handlers, which

requires a sound treatment of resumptions.

7.1.2 Dynamically Scoped Effects. The problem of accidental capture also arises in languages with

effect handlers that have a dynamic semantics based on searching the stack for a matching handler

[Dolan et al. 2014; Leijen 2017c; Lindley et al. 2017; Plotkin and Pretnar 2013]. These languages can

be grouped according to whether they statically check effects or not.

Languages without effect systems. Languages without a static effect system like Eff [Plotkin

and Pretnar 2013] or MultiCore OCaml [Dolan et al. 2014] do not guarantee effect safety and

accidental capture happens silently. By absence of an effect system, these languages support effect

polymorphic reuse, trivially.

Effect systems based on rows. Languages with effect-systems based on row polymorphism like

Koka [Leijen 2017c], Frank [Lindley et al. 2017], or Links [Hillerström and Lindley 2016] guarantee

effect safety and support effect polymorphism in the form of parametric effect polymorphism.

While these languages still exhibit accidental capture, this behavior is less surprising because it is

reflected in the types. In Koka, for example, the inferred signature of eachLine would be:

eachLine : (file, string → <exception|e> ()): <fileio,console|e> ()

This type clearly states that eachLine can intercept exceptions thrown by its function argument.

However, there is a flip side of the coin: the fact that eachLine uses exceptions in its implementation

leaks into the type of its parameter f. This correctly reflects the runtime semantics: exceptions

raised by f are handled by eachLine resulting in "error reading file". To encapsulate this
implementation detail, some languages require the user to manually use term-level lifting constructs

[Biernacki et al. 2017; Convent et al. 2020; Leijen 2018b]. For example, in Koka the call to the

argument function f would need to be enclosed in a lift to express that any exceptions in f should

not be handled by the next enclosing handler inject<exception>({ f(nextLine(file)) }).
These lifting constructs come with their own complications [Convent et al. 2020] and our own

experience working in these languages confirms that they pose a major usability issue, even in

medium-sized programs. The need for them is a consequence of the operational semantics based

on dynamic handler search in these languages.

7.1.3 Lexically Scoped Effects. More recent languages with effect handlers implement lexically
scoped effects. In those languages, effect operations are not handled by their dynamically closest

handler, but instead a lexical relation between handlers and effect operations is established. These

languages do not suffer from accidental capture. Again, we can organize the languages according

to the presence of a static effect system.

Languages without effect systems. Like System Ξ, implementations based on explicit [Brachthäuser

et al. 2018] or implicit [Brachthäuser and Schuster 2017] capability passing avoid the problem

of accidental capture by closing over the lexically scoped capability. Bauer and Pretnar [2015]

explicitly pass effect instances and avoid the problem of accidental capture. Without a static effect

system, those languages do not guarantee effect safety.

Languages without effect polymorphism. Bauer and Pretnar [2013] present an effect system for a

language with effect handlers. They assume a statically fixed set of effect instances, which are term-

level constants. Instances are in spirit similar to capabilities and allow programmers to disambiguate
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operations for the same effect, corresponding to different handlers. In contrast to our capabilities,

instance expressions are first-class and their types have to statically approximate the (set of) effect

instances the expression could stand for. While in System Ξ, capabilities are created and bound

at handlers, handlers in the work of Bauer and Pretnar [2013] can be parametrized by the effect

instance. In some cases those instances are not known statically, and thus the handler cannot

remove the instance from the effect type of the handled expression. The most important difference

to the present work, is that the language that they present does not feature effect polymorphism.

Instead, in first-order programs code reuse at different effect types is achieved with subtyping.

They, however, do not discuss how to achieve code reuse of higher-order functions.

Schuster et al. [2020] present a technique for compiling effect handlers in capability-passing style.

Just like our language System Ξ, their language λCap is in explicit capability-passing style. They

explore compiler optimizations for languages with effect handlers, while we explore effect systems

from a user perspective. While System Ξ does not have an effect system and relies on blocks being

second-class to ensure effect safety, their language indexes effectful computations with a list of

answer types to ensure effect safety. They do not feature effect polymorphism and assume that

all programs have been monomorphized. They use the statically known list of answer types to

translate their programs to iterated continuation-passing style [Schuster and Brachthäuser 2018],

while we use a library for multi-prompt delimited continuations [Dybvig et al. 2007]. It would be

interesting to connect the two approaches by inferring the list-structured effect types for System Ξ.

Languages with parametric effect polymorphism. Languages with lexically scoped handlers are

equipped with effect systems [Biernacki et al. 2020; Brachthäuser et al. 2020b; Zhang and Myers

2019] and track a set of effect instances on the type level. By establishing a lexical binding, lifting

annotations are not required while guaranteeing effect parametric reasoning [Zhang and Myers

2019]. However, the effect systems of these languages are typically quite involved and often require

limited forms of dependent types. Furthermore, they only support parametric effect polymorphism.

Xie et al. [2020] provide a connection between dynamically scoped effects and lexcically scoped

effects as a translation from a language with the former to a language with the latter. They prove

that on a subset of the former, which only uses scoped resumptions, the semantics coincide. Their

source language features effect polymorphism based on effect rows [Leijen 2014] while our source

language is based on contextual effect polymorphism. Guided by the effect types, they translate

programs to explicitly pass evidence vectors, very similar to how we translate programs to explicitly

pass individual capabilities.
In summary, in comparison to other languages with effect handlers, Effekt uniquely guarantees

effect safety, avoids accidental capture, and establishes encapsulation without lifts with a very

lightweight effect system based on contextual effect polymorphism.

7.2 Second-class Values
Our treatment of functions as second-class values is inspired by Osvald et al. [2016]. They use second

class functions to establish a type-based escape analysis and present case studies for exceptions,

memory regions, and well-scopedness in program generation. In this paper, we generalize the

calculus of Osvald et al. [2016] to effect handlers, and present a language design around this insight.

7.2.1 Limitations. The work by Osvald et al. [2016] and Zhang et al. [2016] suggests that it is viable
to add first-class functions to Effekt. However, we purposefully refrained from doing so to focus

on studying the combination of effect handlers and second-class functions (blocks). While a large

class of programs using effect handlers is still expressible in Effekt despite this restriction, we want
to single out three representative examples from the literature that are not.
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Functional State. Effect handlers can encode state [Pretnar 2015] by interpreting the Get and

Put operations into an answer type that is a function. In Effekt, this is not allowed since handlers

cannot return functions. The idiomatic way in Effekt to write a handler for Get and Put is to use a

local reference, which is safe and has the correct backtracking behavior as described in Section 6.2.2

Scheduler. Effect handlers can express structured concurrencywith user defined schedulers [Dolan
et al. 2015]. In Effekt, this is not possible since it would require to store the continuation in a data

structure (such as a queue). However, in Effekt continuations are blocks and can neither be returned,
nor stored in data structures. In our implementation of Effekt we resort to locally unsafe primitives.

Scoped Effects. Effect operations that take function parameters are called higher-order operations
or scoped [Wu et al. 2014]. To establish effect safety, effect operations in Effekt cannot take block
arguments. Allowing effect operations to take block arguments would break effect safety, since this

way blocks could close over capabilities that in turn would leave their defining scope [Brachthäuser

et al. 2020b]. This way, examples like the async effect by Leijen [2017b] are ruled out in Effekt:

effect async { fun await( initiate : (result<a> → io ()) → io ()) : result<a> }

However, it is possible to define an API in Effekt that is based on promises [Dolan et al. 2017].

7.3 Coeffects
The general idea of expressing requirements on the context in the type is not new and can in

similar form be found in coeffect systems [Petricek et al. 2014]. Petricek et al. describe a calculus

that can be instantiated to express (amongst others) implicit variables. We also interpret effects as

a requirement on the calling context. In consequence, some details of the effect system of Effekt
align with their coeffect system for implicits. In particular, effects in Def (Figure 3.2) can also be

handled either at the call-site or the definition-site. Petricek et al. [2014] refer to those requirements

as latent or immediate, correspondingly. While the effect system of Effekt has some similarities to

coeffects, we also allow for control effects. In consequence, while implicit variables (once resolved)

are treated as first class, the type-system of Effekt needs to assert that capabilities cannot escape

the region of their handler. Effekt can thus be seen as a combination of a coeffects, second-class

values, and delimited control. In this paper, we present a practical language design employing the

contextual perspective. In the future, we hope to formally establish the relation to coeffects.

7.4 Lightweight Polymorphic Effects
Rytz et al. [2012] introduces separate function types for effect monomorphic and effect polymorphic

functions. Applying the latter, the effects of the argument function still have to be handled at the

call-site. This is similar to contextual effect polymorphism and all functions (i.e., blocks) in Effekt
are effect polymorphic in the sense of Rytz et al. [2012]. However, in the calculus of Rytz et al.

[2012], functions are either fully polymorphic or monomorphic. It is thus not clear how to express

handler functions like always42 (Section 2) that mention some effects on their argument functions,

but are polymorphic in the rest.

Summary. The design of Effekt aims at exploring a sweet spot between simplicity and expres-

siveness. In particular, the Effekt language: guarantees effect safety – all user defined control effects

are eventually handled; avoids accidental capture – effects not mentioned in a signature cannot be

observed; supports effect handlers – advanced control-flow constructs can be expressed as libraries;

guarantees effect encapsulation – implementation effects are not leaked into the signature; sup-

ports contextual effect polymorphism – higher order functions can be used effect polymorphically

without having to quantify effect variables.
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8 CONCLUSION
In this paper, we have taken a novel view on effect systems for languages with effect handlers.

Traditionally, effect types express which side effects a computation might have, besides computing

the resulting value. Instead, we have assumed a different interpretation where effect types express

which capabilities a computation requires from its context. This different perspective opens up a

novel design space, offering different trade-offs. On the negative side, we lose purity guarantees

since contextual purity does not imply purity. The restriction to blocks instead of first-class functions

also entails some expressiveness limitations. On the positive side, the language design becomes

very simple. Parametric effect polymorphism is not needed anymore (and replaced by lightweight

contextual effect polymorphism) and we can guarantee effect safety and absence of accidental

capture. We believe that we have identified an interesting sweet spot of effect handler design that

can contribute to a more wide-spread adoption of effect handlers in programming languages.
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Extented Syntax for Operational Semantics:

Runtime Statements s ::= ... | #l { s } delimiters

Runtime Block Values w ::= ... | capl { (x : τ , k : σ ) ⇒ s } capabilities

Runtime Labels l ::= @a5f | @4b2 | ... labels

(a) Extended Syntax of System Ξ.

Evaluation Contexts:

Contexts E ::= □ | val x = E; s | #l { E }

Delimited Contexts Hl ::= □ | val x = Hl ; s | #l′ { Hl } where l , l ′

Reduction Rules:

(let) val x = v ; s −→ s[x 7→ v ]

(fun) def f = w ; s −→ s[f 7→ w ]

(app) ({ (x , f ) ⇒ s })(v , w ) −→ s[x 7→ v , f 7→ w ]

(ret) #l { v } −→ v

(handle) handle { F ⇒ s } with { (x , k ) ⇒ s ′ } −→ #l · s[F 7→ capl { (x , k ) ⇒ s ′ }] where l fresh

(cap) #l · Hl · (capl { (x , k ) ⇒ s })(v ) −→ s[x 7→ v , k 7→ { y ⇒#l · Hl · y }]

Congruence:

(cong) If s −→ s ′ then E[s] 7−→ E[s ′]

(b) Operational semantics of System Ξ.

Fig. 7. Operational semantics of the core language System Ξ.

A APPENDIX
A.1 Operational Semantics of System Ξ

Figure 7 defines the operational semantics of System Ξ as a variant of multi-prompt delimited

continuations [Dybvig et al. 2007; Gunter et al. 1995]. The presentation of the operational semantics

in Figure 7b is based on delimited evaluation contexts and follows Leijen [2017c] (who in turn

follows Wright and Felleisen [1994]). We first define the syntax of contexts E, then define a one-step

reduction relation −→. The standard rule for congruence (cong) gives rise to a reduction relation

7−→, which admits reduction under a context E.
The syntax of contexts E includes empty contexts□, statements to be evaluated later val x = E; s ,

and delimiters #l { E }. Additionally, we define delimited contexts Hl where the label l does not
appear in any delimiters. This way, captured continuations are always delimited by the dynamically

closest delimiter.

Notation. In the description of the operational semantics, we sometimes omit type annotations,

write τ → τ ′ for (τ ) → τ ′, and { x ⇒ s } for { (x : τ ) ⇒ s } correspondingly. Additionally, we

follow Leijen [2017a] and use right associative dot notation, a syntactic abbreviation for working

with evaluation contexts. We write E · s for E[s] and #l · s for #l { s }. Dot notation emphasizes

a stack intuition of evaluation contexts, with the stack growing from left to right. This way the

context E1[#l { E2[ s ] }] can concisely be written as E1 · #l · E2 · s .
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Syntax of Types:

Value Types τ ::= Int | Bool | ...

Block Types σ ::= (τ , σ ) → τ

Value Environment Γ ::= ∅ | Γ, x : τ

Block Environment ∆ ::= ∅ | ∆, f : σ

Label Environment Ξ ::= ∅ | Ξ, l : τ

Type Rules:

Statement Typing. Γ ∆ Ξ ⊢ s : τ

Γ ∆ Ξ ⊢ s0 : τ0 Γ, x : τ0 ∆ Ξ ⊢ s1 : τ1

Γ ∆ Ξ ⊢ val x = s0; s1 : τ1
[Val]

Γ ⊢ e : τ

Γ ∆ Ξ ⊢ e : τ
[Expr]

Γ ∆ Ξ ⊢ b : σ Γ ∆, f : σ Ξ ⊢ s : τ

Γ ∆ Ξ ⊢ def f = b; s : τ
[Def]

Γ ∆ Ξ ⊢ b : (τ , σ ) → τ0 Γ ⊢ e : τ Γ ∆ Ξ ⊢ b : σ

Γ ∆ Ξ ⊢ b(e, b) : τ0
[Call]

Γ ∆, F : τ1 → τ0 Ξ ⊢ s : τ
Γ, x : τ1 ∆, k : τ0 → τ Ξ ⊢ s ′ : τ

Γ ∆ Ξ ⊢ handle { F ⇒ s } with { (x , k ) ⇒ s ′ } : τ
[Handle]

Γ ∆ Ξ, l : τ ⊢ s : τ

Γ ∆ Ξ ⊢ #l { s } : τ
[Delimit]

Block Typing. Γ ∆ Ξ ⊢ b : σ

∆(f ) = σ

Γ ∆ Ξ ⊢ f : σ
[BlockVar]

Γ, x : τ ∆, f : σ Ξ ⊢ s0 : τ0

Γ ∆ Ξ ⊢ { (x : τ , f : σ ) ⇒ s0 } : (τ , σ ) → τ0
[Block]

Ξ = Ξ1, l : τ , Ξ2 Γ, x1 : τ1 ∆, k : τ0 → τ Ξ1 ⊢ s : τ

Γ ∆ Ξ ⊢ capl { (x1 : τ1, k : τ0 → τ ) ⇒ s } : τ1 → τ0
[Cap]

Expression Typing. Γ ⊢ e : τ

Γ(x ) = τ

Γ ⊢ x : τ
[Var] Γ ⊢ n : Int

[Lit]

Fig. 8. Type system of System Ξ, label environment Ξ is only needed for proofs and highlighted in grey.

The one-step reduction relation −→ relates a redex with its reduct. Rules (let), (fun), and (app)
are completely standard and use capture avoiding substitution of values (and blocks), which we

denote as s[x 7→ v ]. Rule (handle) and rule (cap) are described in the main text (Section 4.3). Rule

(ret) allows a value to leave a delimiter by simply dropping the delimiter. To ensure effect safety, it

is critical that only values and not block values can leave the scope of a delimiter since otherwise

capabilities could escape.
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A.2 Extended Typing of System Ξ

Figure 8 extends the type system of System Ξ to account for the additional runtime constructs. To

guarantee soundness and in particular effect safety, typing judgements for statements and blocks

include the label context Ξ. The label context Ξ is an ordered mapping of runtime labels to the

types of their introducing delimiters. It approximates the shape of the evaluation context in which

a well-typed statement can safely be reduced. The label context helps us to express invariants that

we will show to hold during evaluation.

The abbreviated typing rules of System Ξ in Figure 3b did not interact with the label context,

which becomes visible in the full definitions in Figure 8. This is different for rule Delimit, which

types a delimited statement s in a larger label context, extended with a pair of label l and type τ .
The answer type τ is the type of the delimited statement and the type of the overall statement.

Symmetrically, the premise of rule Cap requires that the label context Ξ contains the label l
and can be split into a prefix Ξ1 and a suffix Ξ2. Only the prefix is relevant for typing the body

s : Intuitively, the prefix Ξ1 contains labels of delimiters that were in scope when the capability

was originally introduced. Remember how calling a capability captures the continuation and the

capability’s handler implementation s is evaluated in a smaller context. Similarly, the handler

implementation s is typed under the prefix Ξ1. Finally, the rule assigns block type τ 1 → τ 0 to the

overall capability.

A.3 Soundness of System Ξ

In our mechanized formalization, we represent System Ξ terms by their typing derivations [Wadler

2018] and show progress constructively by implementing operational semantics as a total step

function.

A.3.1 Preservation. Here, we discuss relevant lemmas, necessary to prove preservation (Theo-

rem 4.3). For illustration, we use the Example 2, which we repeat here for convenience.

Example 3. (Excerpt of Example 2)
We assume an effect operation Yield : Int → Int.

handle { Yield ⇒ val x = Yield(20); x ∗ 2 } with { (x, k) ⇒ k(x + 1) }

Reducing handle introduces a fresh label (e.g., @a1) and uses it to delimit the handled program. It

also introduces a capability and substitutes it for Yield:

#@a1 { val x = (cap@a1 { (x, k) ⇒ k(x + 1) })(20); x ∗ 2 }

Applying rule (cap), we obtain (captured stack segment highlighted in grey ):

k(20 + 1) where k = { y⇒ #@a1 { val x = y; x ∗ 2 } }

. . .

Substitution of Capabilities. Applying reduction rule (handle) introduces a fresh label (e.g., @a1),
creates a capability delimited at that label, and substitutes it for Yield. To show that this reduction

step preserves types, we need the usual substitution lemma for values.

Lemma A.1 (Expression value substitution). Given a statement Γ, x : τ ′ ∆ Ξ ⊢ s : τ
and a value Γ ⊢ v : τ ′, we have Γ ∆ Ξ ⊢ s[x 7→ v ] : τ .

Additionally, to account for substituting the capability into the handled statement, we also require

a corresponding lemma for blocks:

Lemma A.2 (Block value substitution). Given a statement Γ ∆, f : σ Ξ ⊢ s : τ and a
block value Γ ∆ Ξ ⊢ w : σ , we have Γ ∆ Ξ ⊢ s[f 7→ w ] : τ .
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Originally, the body of the capability (i.e., k(x + 1)) has been typed outside of the handle statement.

We need to adjust the typing derivation to a larger context, including additional delimiters such as

#@a1. This is captured in Lemma A.3.

Lemma A.3 (Label context weakening). If Γ ∆ Ξ ⊢ s : τ then for l ̸∈ Ξ and Ξ = Ξ1, Ξ2,
we have Γ ∆ Ξ1, l : τ ′, Ξ2 ⊢ s : τ .

This lemma states that label contexts can be weakened, that is, unused delimiters do not influence

the typing of a statement.

Labels are in Context. To prove Theorem 4.3, we additionally need to establish a correspondence

between the approximation of the label contextΞ and the actually bound labels in evaluation context

E. For notational convenience, we write E : τ 1 → τ 2 to express that a context E can be assigned a

type τ 2, given its hole has type τ 1. That is, for some fresh x we have Γ, x : τ 1 ∆ Ξ ⊢ E[x ] : τ 2.
We define label extraction of the evaluation context as:

⌈□⌉ = ∅ ⌈val x = E; s⌉ = ⌈E⌉ ⌈#l { E }⌉ = l , ⌈E⌉

The correspondence between labels in Ξ and delimiters in E is established in Lemma A.4.

LemmaA.4 (Correspondence of labels). If Γ ∆ Ξ ⊢ E[s] : τ where E : τ ′ → τ , then Γ ∆ Ξ, Ξ′ ⊢ s : τ ′

with ⌈E⌉ = Ξ′.

Furthermore, a welltyped statement s can be plugged into welltyped evaluation context E. If the
context binds labels Ξ′

, those do not need to be included in the resulting label context, since E
satisfies those labels.

Lemma A.5 (Context Plugging). Given E : τ → τ ′ and ⌈E⌉ = Ξ′, if Γ ∆ Ξ, Ξ′ ⊢ s : τ
then Γ ∆ Ξ E[s] : τ ′.

Proof. We prove correspondence of labels (Lemma A.4) by induction over the shape of the

evaluation context E.
Case E = □. Since E[s] = s , we can reuse the original typing derivation and compute ⌈E⌉ = ∅.

Case E = val x = E′; s ′. By inversion, the only applicable rule to type check E[s] is Val. This
gives us the premises

• (1) Γ ∆ Ξ ⊢ E′[s] : τ ′′ and
• (2) Γ, x : τ ′′ ∆ Ξ ⊢ s ′ : τ .

From (1) we can derive that E′ types as τ ′ → τ ′′. We can apply the induction hypothesis on the

smaller E′ and get Γ ∆ Ξ, Ξ′ ⊢ s : τ ′ with ⌈E′⌉ = Ξ′
. We can now compute that

⌈E⌉ = ⌈val x = E′; s ′⌉ = ⌈E′⌉ = Ξ′
.

Case E = #l { E′ }. By inversion, the only applicable rule is Delimit. This gives us the premise

• (1) Γ ∆ Ξ, l : τ ⊢ E′[s] : τ

Again, from the induction hypothesis and (1) we get Γ ∆ Ξ, l : τ , Ξ′ ⊢ s : τ ′ with ⌈E′⌉ = Ξ′
.

We can compute that ⌈E⌉ = ⌈#l { E′ }⌉ = l , ⌈E′⌉ = l , Ξ′
. □

Proof of Preservation. Given the above lemmas, we can prove preservation (Theorem 4.3) as follows.

Theorem 4.3 is defined in terms of 7−→. We can specialize it to congruence and obtain the following

variant:

Theorem A.6 (Preservation in Context). If Γ ∆ ∅⊢ E[s] : τ , E : τ ′ → τ , and s −→ s ′,
then Γ ∆ ∅⊢ E[s ′] : τ .

Proof. Applying Lemma A.4, we can obtain Γ ∆ Ξ ⊢ s : τ ′ with ⌈E⌉ = Ξ.
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Proof by case distinction on the reduction rule applied to the redex:

case (let):
We have val x = v ; s ′′ −→ s ′′[x 7→ v ] and the premises of Val give us:

• (1) Γ ∆ Ξ ⊢ v : τ ′′ and
• (2) Γ, x : τ ′′ ∆ Ξ ⊢ s ′′ : τ ′.

Applying (let) gives us s[x 7→ v ]. By substitution lemma (LemmaA.1) on (1) and (2), we obtain

Γ ∆ Ξ ⊢ s ′′[x 7→ v ] : τ ′. By LemmasA.4 andA.5, we finally obtain Γ ∆ ∅⊢ E[s ′′[x 7→ v ] ] : τ .
case (fun)

Analogous to (let), but using the substitution lemma for blocks (Lemma A.2) modulo label

context weakening of Ξ (Lemma A.3).

case (ret)
We have #l { v } −→ v . From rule Delimit we get:

• (1) Γ ∆ Ξ, l : τ ′ ⊢ v : τ ′.

Since v is typed by Expr, without any labels, we can pick an arbitrary label context Ξ and

derive Γ ∆ Ξ ⊢ v : τ ′. By Lemmas A.4 and A.5, we obtain Γ ∆ ∅⊢ E[v ] : τ .
case (app)

Similar to (let) and (fun).
case (handle)

We have handle { F ⇒ s ′′ } with { (x , k ) ⇒ s ′′′ }
−→ #l · s

′′[F 7→ capl { (x , k ) ⇒ s ′′′ }] where l fresh . From rule Handle, we get

• (1) Γ ∆, F : τ x → τF Ξ ⊢ s ′′ : τ ′ and
• (2) Γ, x : τ x ∆, k : τF → τ ′ Ξ ⊢ s ′′′ : τ ′.

Using (2) and choosing Ξ2 = ∅, we can apply Cap and type

Γ ∆ Ξ, l : τ ′, ∅⊢ capl { (x , k ) ⇒ s ′′′ } : τ x → τF (3). Finally, we use (1), substitution on

(1) and (3), contextweakening (LemmaA.3) and rule Delimit to obtain Γ ∆ Ξ ⊢ #l · s
′′[F 7→ ...].

We can apply context weakening, since l is fresh.
case (cap)

We have #l · Hl · (capl { (x , k ) ⇒ s ′′ })(v ) −→ s ′′[x 7→ v , k 7→ { y ⇒#l · Hl [y] }]
We use Lemma A.4 to obtain:

Γ ∆ Ξ, Ξ′ ⊢ (capl { (x , k ) ⇒ s ′′ })(v ) : τ ′′ with ⌈#l { Hl }⌉ = Ξ′
.

From rule Call, we have

• (2) Γ ∆ Ξ, Ξ′ ⊢ capl { (x , k ) ⇒ s ′′ } : τ 1 → τ ′′,
• (1) Γ ∆ ⊢ v : τ 1,

From rule Cap, we have

• (3) Γ, x : τ 1 ∆, k : τ ′′ → τ ′ Ξ ⊢ s ′′ : τ ′.

We are left to show that Γ ∆ Ξ ⊢ { y ⇒#l · Hl [y] } : τ ′′ → τ ′, that is,
Γ, y : τ ′′ ∆ Ξ ⊢ #l · Hl [y] : τ ′ (using rule Block).We can show this by reusing the original

typing derivation, replacing the derivation tree for (capl { (x , k ) ⇒ s ′′ })(v ), by the assumption

Γ(y) = τ ′′ and rule Var

□

A.3.2 Semantic Soundness. In our mechanized formalization, show progress constructively by

implementing operational semantics as a total step function. For ease of presentation, here we adapt

the proof of Leijen [2017c] to our calculus. Leijen uses techniques from Wright and Felleisen [1994]
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identifying unhandled effects as faulty expression and then showing, that those faulty expressions

cannot be typed. Similarly, Definition 4.1 identified unhandled effects as faulty statements.

To proof soundness, like Leijen [2017c], we define the following lemma.

LemmaA.7 (Label contexts aremeaningful). If Γ ∆ Ξ ⊢ Hl [(capl { (x , k ) ⇒ s ′ })(v )] : τ ,
then l ∈ Ξ.

This lemma states that label contexts are meaningful: if a capability refers to a runtime label l and
this label is not delimited in the evaluation context, then l has to be part of the label context Ξ.

Proof. By induction over the contextHl . For the base case, rule Cap requires thatΞ = Ξ1, l : τ , Ξ2,

so l ∈ Ξ. For case val x = H′
l ; s , we have by induction that l ∈ Ξ and Ξ is preserved by rule Val.

Finally, for case #l′ { H′
l } where l , l ′, we have that l ∈ Ξ, l ′. Rule Delimit only binds l ′, so

l ∈ Ξ. □

In consequence, only delimiters #l can introduce labels in the context Ξ.
We are finally ready to state semantic soundness of System Ξ as follows:

Theorem A.8 (Semantic Soundness of System Ξ). If ∅ ∅ ∅⊢ s : τ , then reducing s diverges,
or s 7−→∗ v .

Proof. By contradiction: Starting from ∅ ∅ ∅⊢ s : τ , let us assume we have a series of

reductions s 7−→∗ Hl [(capl { (x , k ) ⇒ s ′ })(v )] such that l is unhandled. By Lemma A.7, we

know that l needs to be in the label context, which (by preservation, Theorem 4.3) is empty

contradicting our assumption. □

A.4 Preservation of Well-typedness
Proof of Theorem 5.1. The translation from Effekt to System Ξ preserves well-typedness,

which we show by induction over the typing derivations of the source language. Here, we only

give the proof for the most interesting case Def. Given

Γ ∆ Σ ⊢ def f (x : τ , g : σ ) : τ0 / ε0 = s0; s : τ (ε ′0 \ ε0) ∪ ε

we need to show:

Γ T J∆K + T J(ε ′0 − ε0) + εK ∅⊢ SJdef f (x : τ , g : σ ) : τ0 / ε0 = s0; sK : τ

From the premises, we have:

• Γ, x : τ ∆, g : σ Σ ⊢ s0 : τ 0 ε ′0 (1)
• Γ ∆, f : (τ , σ ) → τ 0 / ε0 Σ ⊢ s : τ ε (2)

Applying the definition of SJ · K and typing rule Def, leaves us to show:

Γ T J∆K + T J(ε ′0 \ ε0) ∪ εK ∅⊢ { (x , g , F1, ..., Fn ) ⇒ SJ s0 K } : (τ , σ , T JF1K, ..., T JFn K) → τ0

and

Γ T J∆K + T J(ε ′0 \ ε0) ∪ εK, f : (τ , σ , T JF1K, ..., T JFn K) → τ0 ∅⊢ SJ s K : τ

For the first proof obligation, we derive:

Ind. hyp., exchange, and (1)

Γ, x : τ TJ∆K + TJε′0K, д : TJσK ∅⊢ SJs0K : τ0

Γ, x : τ TJ∆K + TJε′0 \ ε0K + TJε0K, д : TJσK ∅⊢ SJs0K : τ0

Γ, x : τ TJ∆K + TJε′0 \ ε0K, F1 : TJF1K, ..., Fn : TJFnK, д : TJσK ∅⊢ SJs0K : τ0
[Translation]

Γ, x : τ TJ∆K + TJε′0 \ ε0K, д : TJσK, F1 : TJF1K, ..., Fn : TJFnK ∅⊢ SJs0K : τ0
[Exchange]

Γ TJ∆K + TJε′0 \ ε0K ∅⊢ {(x, д, F1, ..., Fn )⇒SJs0K} : (τ , σ , TJF1K, ..., TJFnK)→τ0
[Block]

Γ TJ∆K + TJ(ε′0 \ ε0) ∪ εK ∅⊢ {(x, д, F1, ..., Fn )⇒SJs0K} : (τ , σ , TJF1K, ..., TJFnK)→τ0
[Weakening]
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Here, to apply weakening, we assume the canonical ordering and the definition of the translation

gives us T J(ε ′0 \ ε0) ∪ εK = T Jε ′0 \ ε0K + T JεK. Further more, to apply the induction hypothesis

we compute T Jε ′0 \ ε0K + T Jε0K = T Jε ′0K.
For the second proof obligation, we apply the induction hypothesis, weakening, and (2). □

38


	Abstract
	1 Introduction
	1.1 Effects as Requirements: The Contextual Reading
	1.2 An example
	1.3 Parametric vs Contextual Effect Polymorphism
	1.4 Lexically Scoped Handlers through Explicit Capability Passing
	1.5 Purity: Traditional vs. Contextual Reading
	1.6 Contextual Reading and Second-Class Functions
	1.7 Overview and Contributions

	2 Programming with Effects and Handlers in  Effekt
	2.1 The Fail Effect
	2.2 The Next Effect
	2.3 The Choice Effect
	2.4 Parsing

	3 The Language  Effekt
	3.1 Syntax
	3.2 Typing
	3.2.1 Expression Typing
	3.2.2 Statement Typing


	4 The Core Language  System
	4.1 Syntax
	4.2 Typing
	4.3 Operational Semantics
	4.3.1 Reduction Rules

	4.4 Soundness

	5 Translation of  Effekt to  System
	5.1 Well-typedness Preservation
	5.2 Semantic Soundness of  Effekt

	6 Practical Evaluation
	6.1 Description of the Implementation
	6.1.1 Generated JavaScript Code
	6.1.2 IDE Support for Effects and Handlers

	6.2 Differences to the Calculus
	6.2.1 Builtin Effects
	6.2.2 Local Mutable State

	6.3 Case Studies
	6.3.1 Lexer: Pull-based Streams
	6.3.2 Parser
	6.3.3 ANF-Transformation
	6.3.4 Pretty-Printer
	6.3.5 Automatic Differentiation


	7 Discussion and Related Work
	7.1 Effect Handlers
	7.1.1 Accidental Capture
	7.1.2 Dynamically Scoped Effects
	7.1.3 Lexically Scoped Effects

	7.2 Second-class Values
	7.2.1 Limitations

	7.3 Coeffects
	7.4 Lightweight Polymorphic Effects

	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Operational Semantics of  System
	A.2 Extended Typing of  System
	A.3 Soundness of  System
	A.3.1 Preservation
	A.3.2 Semantic Soundness

	A.4 Preservation of Well-typedness


