
The MNL: A Block-Based Functional Programming
Language with Reactive Blocks

Steven Lolong

University of Tübingen

Tübingen, Germany

steven.lolong@uni-tuebingen.de

Figure 1. Identity function and its application

Abstract
The complexity of functional programming languages can

pose a challenge for learners. However, the use of block-

based languages in learning programming can lower the bar-

riers to the learning process. While many block languages

have been created, they often lack essential features of func-

tional languages and do not include the type inference.
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This gap serves as motivation to develop a block-based

functional programming language that provides visual in-

formation about three programming language conventions.

The development process begins with designing text syntax,

transforming it into blocks, drafting typing rules for visual

languages, and building a new functional block language

called Macaca Nigra Language.

Case studies of Macaca Nigra Language demonstrate that

it effectively provides visual clues through shapes and colors

regarding the three conventions of programming languages.
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languages; Functional languages.
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1 Introduction
The advantages of functional programming, such as purity,

immutability, and referential transparency, can facilitate rea-

soning about software correctness and concurrency [13]

[23]. However, learning functional programming with its

advanced features, such as higher-order functions (HoF) and

implicit type inference, can be difficult for beginners, as well

as for those accustomed to imperative programming.

In general, a programming language follows three conven-

tions: syntax, semantics, and pragmatics. Syntax is the legal

structure of sentences, semantics is the meaning of sentences,

and pragmatics is the use of language. Novice programmers

may find it difficult to understand one or more of the con-

ventions [14]. Furthermore, Kurihara explains that if pro-

grammers do not understand syntax, they will make syntax

writing errors, such as missing curly braces and punctuation

marks. Semantic incomprehension prevents programmers

from understanding the behavior of expressions and func-

tions. Likewise, a lack of understanding of pragmatics causes

programmers to have difficulty understanding when and

how to use expressions and functions.

In parallel, visual programming offers more convenience

than text programming. The use of icons, symbols, diagrams,

and forms that closely resemble the programmer’s mental

representation in a visual language makes visual program-

ming easier for novice programmers to understand. Another

advantage of using graphics is that it can present much more

information than text [21].

The advantages of displaying information through vi-

sual programming languages, including block programming

languages, have caused block-based programming environ-

ments to gain substantial traction as effective tools for in-

troducing computational thinking and programming con-

cepts. It can also lower the barriers to learning programming,

especially for beginners and in educational environments

[26][32]. Abstracting the complexity of text-based syntax

through visual metaphors allows users to focus on logical

structure and algorithmic reasoning. Furthermore, visual lan-

guages with reactive systems can provide real-time feedback

to programmers as event-driven changes occur. Feedback,

such as suggestions and error messages, is convenient for

novice programmers.

While block programming languages like Scratch [16],

Blockly [9], App Inventor [34], and others [30] are effective

tools for beginner and basic application development, they

have limitations in expressiveness. Specifically, they do not

support key features found in functional programming lan-

guages, including HoF, anonymous functions (Lambda), and

guarantees of type soundness. These features are essential

for both the study and practice of application development

using functional languages.

1.1 Main Ideas
The absence of block language support for key features of

functional programming languages has led to the develop-

ment of a block-based functional programming language.

This research introduces the Macaca Nigra Language (MNL),

which is designed to be a block-based functional program-

ming language. MNL supports Lambda abstraction, HoF, and

implicit type inference. The language aims to offer program-

mers visual clues related to syntactic, semantic, and prag-

matic conventions. Its reactive blocks can provide feedback

when errors occur and offer visual suggestions through the

color of connectable blocks.

1.1.1 Avoid Syntax Misconstruction. In terms of syn-

tactic conventions, syntax errors can easily be avoided in

block languages, where programmers do not need to type out

syntax explicitly. However, syntax errors can still occur. For

instance, in Standard ML (SML), Listing 1 may appear nor-

mal for imperative languages like C or mixed languages like

JavaScript. However, according to SML’s grammar, this is an

error because the production rules for sequence expressions

are specific to expressions and cannot be combined directly

with declarations. To properly combine declarations and ex-

pressions, programmers can use the let-binding production

rule, as shown in Listing 2.

Listing 1. SML example of misconstruction syntax

1 fun isAlphabetNumber(num) = (

2 val mx = 92;

3 val mn = 67;

4 if((num >= 67) andalso (num <= 92)

5 then true;

6 else false;

7 )

Listing 2. SML example with correct syntax

1 fun isAlphabetNumber (num) = let

2 val mx = 93;

3 val mn = 67;

4 in

5 if((num >= 67) andalso (num <= 92))

6 then true;

7 else false;

8 end

Syntax construction errors can be prevented by providing

visual clues about production rules. This article discusses

the transition from text-based grammar to block grammar,

offering visual clues that help avoid syntax construction

errors.
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1.1.2 A Meaningful Syntax. Text languages often utilize

abbreviations in their syntax, which can sometimes hinder

the learning process due to the lack of clarity. For exam-

ple, in Listing 3, the term 𝑖𝑛𝑐𝑟𝑟 (2) in the second line has a

different meaning compared to 𝑖𝑛𝑐𝑟𝑟 in the third line, even

though their syntax appears almost identical. The expres-

sion 𝑖𝑛𝑐𝑟𝑟 (2) represents the application of the 𝑖𝑛𝑐𝑟𝑟 function

over the value 2, while 𝑖𝑛𝑐𝑟𝑟 pertains to the binding of values.

The MNL grammar layout provided in this article illustrates

how to effectively use meaningful whole words within block

languages.

Listing 3. Javascript example of bound and function appli-

cation

1 const incrr = (n) => n + 1

2 let three = incrr (2)

3 let anotherIncrr = incrr

4 let four = anotherIncrr (3)

1.1.3 One Color per Term Type. In non-strongly typed

languages like JavaScript, it is possible to use operators with

operands of different types. For example, in the expression

‘’H’ + 17‘, ‘’H’‘ is a string and ‘17‘ is a number. The result

of this operation is ‘’H17’‘, and the data type of the result

is a string. This practice of implicit type conversion can be

problematic when building applications, as it may lead to un-

expected errors in the output. Strongly typed programming

languages do not allow such operations. Errors caused by

semantic incomprehension, such as this, can be avoided by

providing visual clues about the term type to the program-

mer. The section 3.2 explains how to create type rules based

on the visual dimensions to help prevent these errors.

1.1.4 Advanced Suggestion. The output of the debugging
process for incomplete expressions is a notification indicat-

ing that the expression is incomplete, as shown in Listing

4. However, despite the expression being incomplete, it is

still possible to infer the term type after the word “else” in

the first line or after “if” in the second line. Advanced sug-

gestions can help to determine the appropriate type match.

Incomplete expressions can also assist novice programmers

in understanding semantic conventions. This paper outlines

the design and implementation techniques used in building

MNL to provide advanced type suggestions visually.

Listing 4. Scala example of incomplete expressions

1 val err_1 = if(false) 3 else ;

2 val err_2 = 100 + (if(true) else 5);

1.1.5 Smart Constructor. The pragmatic incomprehen-

sion of when and how to apply the function can lead to errors.

For example, in Listing 5, the second line demonstrates an

issue where the number of members in a tuple is less than

the number of parameters required. Additionally, it is worth

noting that the function’s application in the third and fourth

lines yields the same output, despite the differing parameters.

This article includes a section that explains how to design

a smart constructor block for tuples, which automatically

adjusts the minimum required number of tuple members.

Listing 5. Scala example of an incomplete parameter

1 def add_two_inhabitants[A]( a_tuple: (Int , A, Int

)) = a_tuple (0) + a_tuple (2);

2 val incomplete = add_two_inhabitants ((3, 4));

3 val comp_1 = add_two_inhabitants ((3, true , 4));

4 val comp_2 = add_two_inhabitants ((3, "add", 4));

1.2 Contributions
In this work, we provide a formal explanation of the syn-

tax and semantics of MNL and describe the transformation

of text grammar into block grammar. Additionally, the de-

sign of reactive blocks is outlined, and their capabilities are

demonstrated through a case study. The formal represen-

tation clarifying the syntax and semantics, along with the

syntactic transformation from text to blocks of MNL, leads to

several contributions, which can be summarized as follows:

• We are introducing a new block-based functional pro-

gramming language that harnesses the power of a

reactive system.

• We present a comprehensive set of techniques aimed

at facilitating the transition from text-based syntax to

block-based syntax in an effective manner.

• We have implemented new typing rules and type con-

straints that blend two visual dimensions: shape and

color, along with their implementation techniques in

the reactive blocks.

2 Block-based Programming Language
Visual programming languages are taxonomically classified

into flowcharts, data flow diagrams, spreadsheets, puzzle

pieces (blocks), interface management systems, and forms

[21]. Block programming languages utilize blocks that re-

semble puzzle pieces to structure expressions within the

language. Each block has a unique shape or color that indi-

cates how they connect with one another [17].

Block programming languages can facilitate vocabulary

learning by minimizing cognitive load. They achieve this by

breaking down code into smaller, more manageable compo-

nents, which helps avoid syntax errors that can occur with

text-based programming [9]. Some examples of block lan-

guage development for domain-specific languages (DSLs)

include Sonification Blocks for music [2], Autoblocks for

software engineering [3], MIT App Inventor for education

and computational thinking [22], and Robotics applications

[33].

There are three options for developing block languages:

creating a language from scratch, utilizing existing libraries,

and extending an existing block language. Some libraries

available for block language development include Blockly
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[9], OpenBlocks [27], and Droplet [5]. Additionally, there

are extensible block languages such as Scratch
1
, MIT App

Inventor
2
, and Snap!

3
.

The development of MNL uses a library-based approach,

specifically utilizing the Blockly library
4
. This choice facili-

tates enhanced functionality and flexibility in our program-

ming efforts. The graphical user interface (GUI) of the Blockly

library supports event-driven programming, which allows

events to be triggered by various inputs such as keyboard

events, mouse movements, gestures, and changes in visual

properties like color, position, and shape. This capability

facilitates the development of block languages tailored for

reactive systems.

3 The Macaca Nigra Language
MNL extends the lambda calculus expressions denoted as

𝑒 ::= 𝑎 | 𝜆𝑎.𝑒 | 𝑒 𝑒 [12] by incorporating additional features,

including name binding (declaration), let-binding, constants,

conditional expressions, sequences of expressions, operators,

and types.

The development process of MNL starts with the creation

of a text-based syntax. Next, we define grammar types based

on non-terminals and combine them with term types to

generate robust typing rules that ensure the soundness of

the blocks. Finally, the text-based syntaxes are converted

into block-based syntax.

3.1 The Syntax
Syntax construction begins with the development of text-

based grammars and types. Grammar is essential for demon-

strating how tokens are organized to create valid expressions

[8]. The three key elements of grammar are production rules,

non-terminals, and terminals. Production rules define the

relationships among production rules, terminals, and non-

terminals. Terminals consist of fixed symbols, while non-

terminals are variables that can have one or more associated

production rules, terminals, and non-terminals.

MNL grammars are divided into two categories: basic and

core. The basic grammar consists of non-terminal groupings

with associated production rules, as well as commonly used

terminals. These terminals include digits for numbers (0 to 9),

letters from the Roman alphabet, booleans for true and false

values, characters for ASCII, and strings. The core grammar,

illustrated in the Appendix, Figure 14.

The clarity of SML’97’s core grammar [28] [20] has in-

spired the style of many MNL grammars, including con-

structs like let binding, sequences, and case analysis.

The MNL language is designed with block-language capa-

bilities in mind, meaning that users do not need to type out

1
https://scratch.mit.edu/

2
https://appinventor.mit.edu/

3
https://snap.berkeley.edu/

4
https://developers.google.com/blockly

syntax. As a result, all terminals use whole words rather than

abbreviations. This practice offers a brief insight into the se-

mantics and purpose of the production rules. For example, to

retrieve a field from a record, MNL uses the expression Get
field 𝑢𝑖𝑑 from Record 𝑒𝑥𝑝 . This practice contrasts with

the SML language, which employs a notation such as # 𝑙𝑎𝑏
[28]. Using whole words in MNL ensures that each produc-

tion rule forms a simple, yet meaningful sentence, making it

easier for users to understand the intended operations.

Including a meaningful word can address the issue of in-

sufficient information. For instance, the distinction between

application and binding expressions, as demonstrated in List-

ing 3, can be clarified by adding a word that conveys the

semantic meaning of the expression. The production rule

for function application includes a terminal that conveys

the meaning of the expression, represented as Application
of 𝑒𝑥𝑝1 Over 𝑒𝑥𝑝2. Additionally, the use of bound variables

adds a terminal denoted as Bound 𝑢𝑖𝑑 . This approach pro-

vides clearer information, helping to avoid confusion for

programmers.

To avoid confusion when discussing non-terminals, we

use the term child non-terminal and parent non-terminal. For

example, in the production rule 𝑑𝑒𝑐 ::= Variable 𝑢𝑖𝑑 bind
to 𝑒𝑥𝑝 , 𝑑𝑒𝑐 is considered the parent non-terminal, while 𝑢𝑖𝑑

and 𝑒𝑥𝑝 are the child non-terminals.

The core grammar consists of nine non-terminals, namely

𝑢𝑖𝑑 , 𝑐𝑜𝑛, 𝑝𝑎𝑡 ,𝑚𝑡𝑐 , 𝑓 𝑖𝑒𝑙𝑑 , 𝑝𝑎𝑟𝑎𝑚, 𝑒𝑥𝑝 , 𝑑𝑒𝑐 , and 𝑝𝑟𝑜𝑔, which

become the main tie in the construction of production rules.

Each of the nine non-terminals has a unique name, which

is intended to prevent errors in formulating the production

rules.

3.2 The Term Type
The type system in programming languages serves as an

essential tool to ensure program correctness and detect errors

when applying operations to specific values [24]. The type

system classifies types based on the operators that can be

applicable to them. As a functional language with a type

system that checks before applying certain operators, MNL

has term types for primitive, field, polymorphic, tuple, record,

list, function, variable, and match-do.

The design of MNL term type annotations adheres to the

same principles used in grammar design, which emphasizes

the use of whole words to convey meaning. For instance,

consider the term type annotation for the tuple (“Hello”,

7). In Scala, it is defined as (String, Int), while in SML, it

is represented as int*string. In contrast, MNL expresses

this as tuple of (string and number), which demonstrates

that the terminal annotation design for term types in MNL

is capable of conveying more detailed meanings. The term

types of MNL are listed in the Appendix, Figure 15.
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3.3 Syntax Metamorphosis
The metamorphosis from text grammar to block grammar

begins with designing the block anatomy, thenmapping each

text production rule to the block structure, such as shape,

color, and terminal position. Next is the updating of the type

system to match the block language structure. The final part

is the construction of MNL typing rules.

3.3.1 Block Anatomy. The primary objective of block

anatomy design is to provide programmers with information

and visual clues regarding the grammar (production rules,

non-terminals, and terminals), term types, suggestions for

term types, errors, and details about the block itself. After

thoroughly analyzing the text grammar and carefully adapt-

ing the distinctive features of Blockly, we have designed

the MNL block anatomy, which is depicted in Figure 2. The

guiding principles of this innovative design can be elegantly

summarized as follows:

1. One block for one production rule.

2. All rules in non-terminal declarations utilize blocks

that can be organized vertically.

3. Each block contains information about parent non-

terminals, child non-terminals, terminals, term types,

suggestions for term types, error messages, sugges-

tion messages, additional messages, and a toolbox for

adding or removing non-terminals.

4. Non-terminals serve as connections between produc-

tion rules. MNL uses the shape of the connecting block

(notch) as a clue for non-terminals. As shown in Fig-

ures 2a and 2b, there are output notches for parent non-

terminals and input notches for child non-terminals.

5. The color of the block represents the term type.

6. The mutator icon is a clickable icon that displays a

toolbox for adding or subtracting the number of child

non-terminals. This icon is specific to production rules

that have several child non-terminals that can be added

or subtracted by the programmer.

7. The debugger icon is a clickable icon for displaying

error messages in text form.

8. Message icon is a clickable icon for displaying addi-

tional messages in text form.

9. Terminal is a location for terminals.

10. Suggestion box is the location for the term type sug-

gestion in the form of colors.

11. SB-tooltip is a tooltip to display term type suggestions

in text form.

12. The characteristic of a vertical block is that it has only

one notch at the top and only one notch at the bottom

for the non-terminal parent.

13. For vertical blocks, a mutator is unnecessary since the

quantity can be increased by stacking blocks at the top

or bottom.

14. The horizontal block is characterized by having only

one notch on the left for the non-terminal parent.

15. The non-terminal child will be located on the right

side or inside the block.

(a) Horizontal block design

(b) Vertical block design

legend:

A = output notch, B = mutator icon, C = debugger icon,

D = message icon, E = terminal, F = input notch,

G = suggestion box, H = SB-tooltip.

Figure 2. Block anatomy

3.3.2 Text to Block. The transformation of text-based

grammar production rules to blocks involves transforming

production rules into blocks that can be connected. The

rules outlined in section 3.3.1 support this transformation

by providing a direct method to align the components of the

production rules with the block structure. For illustration,

Figure 3 demonstrates this transformation.

Figure 3a depicts the original text production rule, while

Figure 3b shows the corresponding block generated from

that rule. The non-terminal parent of the function abstrac-

tion is 𝑑𝑒𝑐 , while its child non-terminals are 𝑢𝑖𝑑 , 𝑝𝑎𝑟𝑎𝑚,

and 𝑒𝑥𝑝 . The resulting block has three input notches, one
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notch for each child non-terminal. These notches will con-

nect the block with other blocks. Different shapes for each

non-terminal can help programmers avoid syntax miscon-

struction.

In Figure 3b, the terminals of this production rule are Func-
tion, Parameter and Expression, which are represented as

text on the block. All production rules with a non-terminal

parent 𝑑𝑒𝑐 will feature a vertical block design, as shown in

2b, and others will have a horizontal design as in Figure 2a.

(a) Production rule of function abstraction

(b) The function abstraction block

Figure 3. Text to block of function abstraction

Another example is the transformation of a record con-

structor production rule as illustrated in Figure 4. Figure 4a

displays the text production rule, while Figure 4b shows the

corresponding block generated from this rule. The terminals

in this production rule are Record constructor ( 1 ) and

Field ( 2 ), which are displayed on the block as text. This

production rule has a dynamic number of terminals Field
and non-terminals 𝑒𝑥𝑝 , necessitating the use of a mutator

( 3 ) that can adjust the number of these terminals and non-

terminals by adding or removing them as needed.

(a) Production rule of record constructor

(b) The block of record constructor

Figure 4. Text to block of record constructor

3.3.3 Reducing the Number of Blocks. Merging multi-

ple production rules that share the same non-terminal parent

into a single block can reduce the overall number of blocks.

For example, the combination of the production rules 𝑢𝑛𝑖𝑡

and 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 as illustrated in Figure 5a. This approach con-

solidates two production rules. The implementation of the

𝑢𝑛𝑖𝑡 production rule is shown in Figure 5b, while Figure

5c depicts the implementation of the 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 production

rule.

In this merged block, there is a clickable icon ( 0 ) that al-

lows for easy transformation between the𝑢𝑛𝑖𝑡 and 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟

production rules, enabling the programmer to switch be-

tween them as needed swiftly. The merging not only reduces

the number of blocks but also gives programmers the flexibil-

ity to select the production rule that fits the context without

needing to rearrange blocks.

Furthermore, this merger simplifies the visual layout of

the blocks, so that the programmer can concentrate more

on the program logic, rather than on the block arrangement.

Interestingly, this merge does not change the meaning of

the expression, as both production rules serve to express the

parameters in the expression.

(a) Non-terminal parameter

(b) Text to block of parameter - unit

(c) Text to block of parameter - identifier

Figure 5. Text to block of non-terminal parameter

3.3.4 Text to Color. MNL not only provides visual clues

through shapes to help assemble correct syntax, but also em-

phasizes the importance of term types in programming. Term

types are a fundamental concept in programming languages,

as they convey information about the type of data used in an

expression. Understanding term types enables programmers

to learn how to utilize them and what operations can be

performed on them.

Therefore, MNL represents term types through colors.

Each term type has a distinct color, allowing the programmer

to easily distinguish the term type being constructed. This

color also helps in identifying the term type errors while

constructing blocks. The transformation of text types in the

Appendix, Figure 15 to colors can be seen in the Appendix,

Figure 16.

The use of colors to represent term types has its limita-

tions, especially when it comes to complex term types pre-

sented within a single block. An excessive variety of colors
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can make it challenging for programmers to differentiate be-

tween these term types. Therefore, MNL only represents the

top-level term types in color. More complex term types, such

as functions, tuples, records, and lists, are also represented

by color but only at the top level. Detailed information about

these complex term types is provided through text.

For instance, in Figure 1, the function declaration is dis-

played with the color corresponding to the function type,

while the specific details about the function are accessible

via the message icon when clicked.

3.3.5 Block Type. Type construction for visual languages

differs from that of text languages. Type checking in text lan-

guages operates in a single dimension, consisting only of a

stream of letters for term types, with syntax structure check-

ing occurring at the parsing stage. On the other hand, visual

languages can have two or more dimensions, necessitating

more complex typing rules to represent each dimension.

MNL utilizes two visual dimensions within a single block

to provide clues to the programmer: shape for grammar and

color for term types. Non-terminals determine how produc-

tion rules can be interconnected, which is represented by the

shape of the block notch. For this reason, a grammar type

(GT) is introduced, where the keyword used is taken from

non-terminals. Hence, the block type is a conjunction of the

grammar type and the term type, as illustrated in Figure 17.

The rule of one block for one production rule in text-to-

block transformation and the block type rule have created

a gap in the availability of term types for the supporting

production rules, especially those of the non-terminal 𝑢𝑖𝑑 .

To fill this gap, a new term type has been introduced for all

supporting production rules: 𝑛𝑜𝑡ℎ𝑖𝑛𝑔. This type indicates

that the supporting production rule has no applicable opera-

tors. Additionally, it means that no values are available for

use in it.

With the addition of the term type 𝑛𝑜𝑡ℎ𝑖𝑛𝑔, the term types

for all production rules in MNL are now complete and can

be used to build typing rules.

3.3.6 Typing Rules. Typing rules are a set of rules used
to determine the type of an expression in a programming

language. These rules are used to ensure that the expression

written by the programmer conforms to the expected type.

Type rules are also used to ensure that expressions written

by programmers do not generate type errors when executed.

The typing rules in MNL are derived from the commonly

used typing rules in functional programming languages.

However, MNL includes an additional encoding for the visual

aspects of shapes. For instance, Figure 6a illustrates a type

rule for conditions typically found in text-based languages,

represented by a single type (one dimension), written as

𝑇 . In contrast, Figure 6b presents an MNL block type rule,

where the block type is represented as 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⊗ 𝑇 .

Γ ⊢ 𝑒𝑥𝑝1 : 𝑏𝑜𝑜𝑙𝑒𝑎𝑛

Γ ⊢ 𝑒𝑥𝑝2 : 𝑇 Γ ⊢ 𝑒𝑥𝑝3 : 𝑇

Γ ⊢ Condition When 𝑒𝑥𝑝1 Is true 𝑒𝑥𝑝2
Otherwise 𝑒𝑥𝑝3 : 𝑇

T-Condition

(a) Typing rule of the Condition

Γ ⊢ 𝑒𝑥𝑝1 : 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⊗ 𝑏𝑜𝑜𝑙𝑒𝑎𝑛
Γ ⊢ 𝑒𝑥𝑝2 : 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⊗ 𝑇
Γ ⊢ 𝑒𝑥𝑝3 : 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⊗ 𝑇

Γ ⊢ Condition When 𝑒𝑥𝑝1 Is true 𝑒𝑥𝑝2
Otherwise 𝑒𝑥𝑝3 : 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 ⊗ 𝑇

BT-Condition

(b) Refinement typing rule of the Condition

Figure 6. Typing rules refinement

In one-dimensional languages, there is no need for a typ-

ing rule regarding the names of variables or parameters.

However, in block languages, this rule is essential to en-

sure that the type evaluation result of a well-typed block

(𝑏 : 𝐺𝑇 ⊗𝑇 ) will produce a value or allow for further evalua-

tion of 𝑏 (i.e., 𝑏 → 𝑏′).
With the introduction of the ID typing rule, the MNL

typing rules for variable and function declarations, parame-

ters, and bounds differ from those in text-based languages,

where the ID typing rule is integrated into the premises, as

illustrated in the Appendix, Figure 19. This typing rule also

ensures that the names used in the variable, function, or

parameter do not conflict with existing names in the context

(Γ). Additionally, for the bound typing rule, the ID typing

rule ensures that the name used in the bound is present in

the Γ.
In addition to the ID typing rules, MNL established three

supplementary typing rules in the normal form: constant,

pattern, and parameter. As illustrated in Appendix, Figure

18.

If the part of the grammar is omitted, the MNL typing

rules will align with the typing rules in Pierce’s functional

programming language [24]. Therefore, the proof of the term

type for the MNL typing rule can utilize Pierce’s proof. Re-

garding the grammar type proof, this can be accomplished

directly, as the grammar type features only one non-terminal

parent, denoted as𝐺𝑇 , and all its production rules are termi-

nal.

3.3.7 Constraint Typing Rules. Constraint typing rules

are crucial in the type inference process, particularly for

inferring the types of functions. The construction of MNL’s

constraint typing rules uses the method proposed by Pierce
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[24]. However, a notable distinction is the inclusion of gram-

mar types for each rule. An example of a constraint typing

rule for a condition can be found in Figure 7.

Γ ⊢ 𝑏1 : 𝐸𝑥𝑝 ⊗ 𝑇1 |𝑋1
𝐶1

Γ ⊢ 𝑏2 : 𝐸𝑥𝑝 ⊗ 𝑇2 |𝑋2
𝐶2

Γ ⊢ 𝑏3 : 𝐸𝑥𝑝 ⊗ 𝑇3 |𝑋3
𝐶3

𝑋1, 𝑋2, 𝑋3 𝑛𝑜𝑛 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔

𝐶′ = 𝐶1 ∪𝐶2 ∪𝐶3 ∪ {𝑇1 = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛,𝑇2 = 𝑇3}
Γ ⊢ Condition When 𝑏1 Is true 𝑏2 Otherwise 𝑏3

: 𝐸𝑥𝑝 ⊗ 𝑇2 |𝑋1∪𝑋2∪𝑋3
𝐶′

CT-Cond

Figure 7. Constraint typing rule of the Condition

4 Reactive System
The MNL reactive system is a system designed to respond

to changes in data or state quickly and efficiently, utilizing

reactive programming principles that enable programmers

to compose visual syntax that dynamically adapts to changes

in data. Reactive programming is an approach that enables

the system to respond to changes in data or state quickly and

efficiently, thereby allowing the development of responsive

and adaptive applications that can adapt to changes that

occur [4].

The reactive system inMNL is centered on the interactions

between blocks. Each block in MNL is called a reactive block

because it can detect events and respond. Events can be

changes in variable values, the addition or subtraction of

child blocks, changes in system state, or interactions with

users. Meanwhile, a reaction is a change that occurs in the

system in response to an event performed by the programmer.

Reactions can take various forms, such as changes in block

type, color, or shape, as well as notifications regarding errors

or needs. It can also be a change in the context used to

determine the term type.

4.1 Reactive Blocks
Typing rule checking consists of two main components:

grammar type checking and term type checking. Grammar

type checking occurs when a programmer attempts to con-

nect two blocks. If the non-terminal parent represented by

the output notch of one block matches the non-terminal

child represented by the input notch of the other block, the

two blocks can be connected. Otherwise, the two blocks will

be separated.

The validation algorithm is detailed in the Appendix, Al-

gorithm 1. In this algorithm, the Event refers to the action

that triggers the response, the Reaction denotes how the

block responds, and the Initial represents the property estab-

lished when the block is created. Lines 1 through 6 outline

the activities that are initiated by the Event.

Term type checking is performed when changes are made

to a block, such as connecting or disconnecting a block,

changing its properties, or changing the number of child

blocks. This process ensures that the inferred term types

conform to the typing rules. When the term type does not

match the typing rules, the system will provide an error

message to the programmer. This feedback will not only

indicate what requirement has not been met but will also

offer suggestions to help the programmer adjust the inferred

term types to ensure compliance with the typing rules.

Based on the typing rule, MNL grammar production rules

can be categorized into two parts. The first category consists

of production rules with monomorphic term types (mono-

color blocks), such as arithmetic operator production rules

that have a term type of 𝑛𝑢𝑚𝑏𝑒𝑟 . The second category is

production rules with polymorphic term types such as pro-

duction rules of 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 − 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟 , 𝑏𝑜𝑢𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ,

𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑑𝑒 𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛, etc.. Blockswithmonomor-

phic term types will have a fixed color. In contrast, blocks

with polymorphic term types will have a changeable color

(chameleon block) according to the term type generated after

the type inference process.

The state of a block is categorized into three different con-

ditions: complete, partially complete, and incomplete. The

complete state means that all input notches are connected

to child blocks. The partially complete state is a state where

only some of the input notches are connected to child blocks.

Meanwhile, the incomplete state means that none of the

input notches have been connected to child blocks.

Reactive blocks will always validate the term type of a

block, even if it is in a partially complete or incomplete

state. In the partially complete or complete state, information

from the child block is crucial, including the term type. The

goal is to provide accurate information to the programmer,

even if the state of the child block is also partially complete,

incomplete, or contains an error. To address this need, each

block requires a default term type to ensure it is well-typed,

thus preventing errors during the inference process. The

default term type of each block must comply with the typing

rules.

4.1.1 The Mono-color Block. The reactive behavior of
themono-color block can be seen in theAppendix, Algorithm

2. During block initialization, three essential properties are

established: the default term type (𝑇 ), 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 , and 𝑐𝑜𝑙𝑜𝑟 .

The term type of the properties𝑇 and𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 must conform

to the typing rules. The 𝑇 property will remain constant,

while the 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 property will change. Since the 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠

property is mutable (see Line 9), it will always be set to the

term type that matches the type rule every time a change

in the block occurs (see Line 2). The 𝑐𝑜𝑙𝑜𝑟 property of the

block will be aligned with the 𝑇 property, ensuring that the

block’s color remains unchanged. The 𝑒𝑟𝑟𝑜𝑟 property on

Line 1 serves to hold all errors that occur. Programmers can
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view the errors in text form by clicking on the debugger icon.

If the block is a child block, then the information from the

𝑒𝑟𝑟𝑜𝑟 property will be used by the parent block to determine

whether the type inference process can be performed or not.

4.1.2 The Chameleon Block. In the Appendix, Algo-

rithm 3 for managing the reactive behavior of chameleon

blocks highlights three key aspects that differentiate the han-

dling of chameleon blocks from that of mono-color blocks.

First, the default term type, where the default type of the

Chameleon block is 𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑐 , which is presented in gray

as shown in Figure 8. Second, whenever a change occurs to

the block, the default term type is reset to 𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑐 be-

fore type inference is performed (see Line 1). Third, there is

a process for updating the 𝑇 property based on the inferred

term type as in Line 10. Type inference uses the algorithm

proposed by Milner [19]. Finally, the 𝑐𝑜𝑙𝑜𝑟 property is up-

dated to reflect the𝑇 property. The change in the 𝑐𝑜𝑙𝑜𝑟 prop-

erty makes the color of the block change as shown in Figure

10b.

Suppose the 𝑇 property contains complex term type in-

formation that cannot be fully represented by color. In that

case, the programmer can view a detailed textual description

of the term type description by clicking on the message icon.

Figure 8. The chameleon block default color

4.1.3 The FunctionBlock. The default term type for func-

tion blocks is from 𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑐 to 𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑐 , which is

represented with blue color. The 𝑇 property will change ac-

cording to the term type generated by the inference process,

but the 𝑐𝑜𝑙𝑜𝑟 property will not change. The immutable 𝑐𝑜𝑙𝑜𝑟

property for a complex term type, such as function, tuple, list,

and record, aims to reduce the complexity of color usage that

can make it difficult for programmers to recognize all color

combinations. The algorithm is detailed in the Appendix,

specifically in Algorithm 4.

However, if the 𝑇 property changes while the 𝑐𝑜𝑙𝑜𝑟 prop-

erty remains the same, it can result in a lack of information

for child blocks. To address this issue, an update action is

enforced for the child blocks (Line 15). Additionally, term

type inference for functions can lead to infinite loops, so it

is essential to perform a check beforehand to prevent this

(Line 10).

4.2 Coloring the Suggestion Box
The suggestion box provides information about the appro-

priate term type corresponding to the input notch next to it,

which is indicated by color. The construction of term type

hints for the suggestion box utilizes the same constraint typ-

ing rules used in type inference for a function. However, a

key difference lies in the naming of polymorphic types.

In the constraint typing rule for the block condition (as

shown in Figure 7), polymorphic types for 𝑋2 and 𝑋3 are

substituted with the type variable ’A during function block

type inference. In contrast, when constructing the term type

for the suggestion box, the polymorphic type ’any’ is still

used (displayed in gray), as shown in Figure 9a.

The construction of the term type for the suggestion box

is the last step in each algorithm. Positioning it in the final

step aims to provide accurate hints, even when the block

state is incomplete, as in Figure 9a, partially complete as in

Figures 9b, or complete but not comply with the typing rules

as in Figure 9c.

However, when the block state is complete and the term

type complies with the type rules, the term type for the

suggestion box must comply with the typing rules as shown

in Figure 9d.

When the block state is incomplete and the block is con-

nected to its parent block, then the term type construction

for the suggestion box will depend on the parent block, as

illustrated in Figure 9e. However, if the block state is com-

plete or partially complete, then the term type construction

for the suggestion block will depend on the child block, as

shown in Figure 9f.

4.3 The Smart Block
The smart block is the tuple constructor block, which adjusts

the minimum number of members to be created. By default,

this block starts with one member, as illustrated in Figure

10a. However, suppose this block is connected to another

parent block where the term type input is a tuple. In that

case, the tuple constructor block will adjust the minimum

number of members as shown in Figure 10b. The adjustment

of the minimum number of members is done before building

the term type for the suggestion box, as in Line 25 in Algo-

rithm 3. As a result, when constructing the term type for

the suggestion box, each member of the tuple constructor

block will have an associated suggestion box for every input

notch.

5 Case Studies
The case study is divided into three parts. The first part

examines how reactive blocks convey information about

term types through the use of color and text. The second

part explores how reactive blocks inform programmers about

errors. Finally, the third part shows HoF abstraction and its

application.

5.1 Reactive with Color and Text
In Figure 1, an identity function is illustrated along with

three of its applications. The figure illustrates how the term
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(a) The incomplete block (b) The partial complete block (c) The complete block-1, but do not comply

with type rules

(d) The complete block-2 (e) The suggestion type is inferred from

the Parent block

(f) The suggestion type is inferred from the

Child block

Figure 9. Suggestion box

(a) The tuple constructor block

(b) Automatically adjusts the amount of input

Figure 10. The smart block

type is represented through color and text for parameters,

bindings, applications, and variable blocks, aligning with

its typing rules. It indicates that the information provided

to the user is accurate. The color changes are visible to the

programmer, while the textual term type can be accessed by

clicking on the message icon.

5.2 Error Messages
Figure 11 illustrates that the reactive block can provide error

information, including incomplete entries ( 1 ) and naming

conflicts ( 2 ). The suggestion block is also capable of dis-

playing information in text format ( 3 ) as an additional hint

when the suggested term type cannot be detailed using color.

Furthermore, the debugging system can offer information

about errors when the term type of the connected term block

does not comply with the type rules, as seen in Figure 12.

Figure 11. Incomplete block and name conflict

Figure 12. Does not comply with typing rules.
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5.3 Higher Order Function
In Figure 13, there is a function with the term type from

(𝑠𝑡𝑟𝑖𝑛𝑔) to (from (𝑠𝑡𝑟𝑖𝑛𝑔) to (from (𝑠𝑡𝑟𝑖𝑛𝑔) to (𝑠𝑡𝑟𝑖𝑛𝑔)). The

first application to 𝑠𝑡𝑟𝑖𝑛𝑔 returns a new function value with a

term type from (𝑠𝑡𝑟𝑖𝑛𝑔) to (from (𝑠𝑡𝑟𝑖𝑛𝑔) to (𝑠𝑡𝑟𝑖𝑛𝑔)) which is

bound to the variable 𝑓 𝑖𝑟𝑠𝑡_𝑎𝑝𝑝 . Then the variable 𝑓 𝑖𝑟𝑠𝑡_𝑎𝑝𝑝

with the function term type is reapplied to 𝑠𝑡𝑟𝑖𝑛𝑔 and returns

a value with the function term type (𝑠𝑡𝑟𝑖𝑛𝑔) to (𝑠𝑡𝑟𝑖𝑛𝑔) and

is bound to the variable 𝑠𝑒𝑐𝑜𝑛𝑑_𝑎𝑝𝑝 .

This case illustrates MNL’s capability for abstraction and

HoF usage, where reactive blocks can perform type inference

seamlessly. Reactive blocks can visually display the term type

of the result of applying a function to a term type through

color and text.

6 Related Work
Related work began with methods for transforming textual

grammars into block grammars and continued with the ca-

pabilities of other block-based programming languages.

6.1 Grammar Transformation
The development time for MNL closely aligns with the re-

search conducted by Merino et al. [17, 18] on transforming

text-based grammar into block-based grammar. Some trans-

formation techniques discussed in Section 3.3 share simi-

larities, such as using one block for each production rule.

For example, statements are arranged in a vertical layout

while expressions use a horizontal layout. Non-terminals are

represented by shapes, terminals (or syntax) are depicted

as labels, and certain non-terminals that accept input from

programmers are illustrated with input forms such as text

boxes or combo boxes.

The inlining techniques that combine multiple rules into a

single block serve a similar purpose to those outlined in Sub

section 3.3.3. However, the merging of rules in Sub section

3.3.3 occurs dynamically through programming, allowing

for the addition or subtraction of labels and inputs.

While Merino et al.’s research focused on grammar trans-

formation, the heuristics in Section 3.3 introduced optimiza-

tions for visual cues. These include clickable icons to indicate

errors and provide additional information, such as the term

type in text form. Color-boxes are also used to suggest term

types, accompanied by tooltips that offer details regarding

the suggested term types in text form.

6.2 Partial Parsing
Partial parsing in MNL is employed to determine the term

type in the suggestion box, similar to the research conducted

by Beckmann et al. [6, 7]. The goal of partial parsing in MNL

is to gather the essential information needed for calculating

term types in the suggestion box. In contrast, Beckmann et

al.’s research focuses on identifying potential block arrange-

ments that can be used for empty or incomplete inputs.

In MNL, when computing the term type for the suggestion

box and the block state is partially complete, all empty inputs

are replaced with the tree structure of a new block with a

term type "any." Conversely, Beckmann et al.’s approach sub-

stitutes empty or incomplete inputs with new tree structures

that are contextually appropriate.

Additionally, if the block state is incomplete and it is con-

nected to a parent block, partial parsing in MNL temporarily

replaces the node of the incomplete block in the parent tree

with a new complete block node marked as "bound." This al-

lows for the computation of the term type for the suggestion

box within that block.

6.3 Related Environments
There are several BPLs that use shapes or colors to distin-

guish term types, such as Scratch, Typeblock, Polymorphic

block, OCaml Blockly, and Bootstrap. Typeblock uses shapes

(notches) to indicate complex term types such as lists, tuples,

and functions. There is no parametric polymorphism, and

no color is used to represent term types. The goal of this

project is to assist programmers in understanding the term

types used in functional programming [31].

Extending Typeblock, the Polymorphic block introduces

the use of colors and shapes to describe term types and

variables. It combines shapes and colors in a block connector.

In this design, shapes are used to distinguish different types,

while colors represent variables [15]. The polymorphic part

is the shape of the connector, which is dependent and will

change when it has a matching type.

Another BPL that uses shapes to distinguish types is Scratch.

Scratch has elliptical shapes for integers, angled shapes for

booleans, and small flat trapezoids are used for statements

[29]. The Snap! grammar structure consists of two main cat-

egories: declarations and expressions. Declarations can be

arranged vertically, while expressions are arranged horizon-

tally. The shape of the notch in the expression group varies

depending on the type of value produced [11]. Additionally,

colors are used to categorize blocks based on their function.

Both Scratch and Snap! Using a complete English word for

the terminal as a label.

OCaml Blockly utilizes a combination of shapes and colors

to represent different types, with each type assigned a unique

shape. Simple types are depicted with distinct shapes, while

polymorphic types combine both shape and color. OCaml

Blockly categorizes non-terminals into two main groups:

declarations and expressions. The supporting non-terminals

are integrated into blocks, such as names for "let" and "type"

declarations [1].

Another approach to distinguishing term types comes

from Bootstrap
5
. Bootstrap is a block-based editor that uses

colors to represent five term types, including gray for poly-

morphic types. The gray color for polymorphic blocks will

5
https://bootstrapworld.org/
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Figure 13. Higher order function

change after their type is determined during program con-

struction. Besides Bootstrap, Poole also uses color and text

to distinguish term types. However, for polymorphic types,

he used a hatching pattern. Furthermore, Poole designed

color-shape combinations for container types such as lists

and tuples [25].

However, none of them explain how to distinguish pro-

duction rules in the grammar to help programmers avoid

syntax errors. In contrast, MNL designed an approach that

not only provides information about types but also infor-

mation about grammar. MNL leverages the advantages of

visual languages to present multi-dimensional information.

Consequently, MNL encodes not just one but three types of

information: grammar, term type, and meaning. It integrates

color and text to represent term types, shapes to indicate

grammar, and natural language to conveymeaning, all within

a single block. When programmers examine the block, they

can identify grammar through shapes, term types through

color and text, and the natural language text to enhance

their understanding of the meaning. The inclusion of visual

notation for shape and color in MNL aligns with Green’s

research on cognitive dimensions [10].

Another difference is that the result of term type infer-

ence in MNL provides visual clues through the color of the

suggestion box about the term types that can be connected,

even when the block state is incomplete or partially complete.

Furthermore, reactive blocks, especially the smart block, can

adjust the minimum number of tuple members for function

application.

7 Discussion
The separation of the non-terminal 𝑢𝑖𝑑 into a separate block

in MNL aims to inform the programmer that 𝑢𝑖𝑑 is the sup-

porting non-terminal. However, it is essential for variable,

parameter, and function declarations. This separation not

only introduces a new block but also adds a new data type

𝑛𝑜𝑡ℎ𝑖𝑛𝑔 to the type rules. Meaning, additional time for the

term type computation. Therefore, if the number of blocks

and efficiency are the primary focus, the block for 𝑢𝑖𝑑 can

be removed and 𝑢𝑖𝑑 incorporated into the block using a text

box.

The implementation of term type checking is integrated

into the block code structure and triggered by programmer

actions or changes in the block’s properties, making the

block reactive. However, the price to pay is high processor

utilization due to the real-time computation of term types

every time a change occurs in the block. If processor usage
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can cause problems, the type of computation can be driven

by a single event, such as the click event.

Compilation processing in computers is a one-dimensional

information processing method, specifically string stream

processing. In contrast, visual languages can encompass

multi-dimensional information. This work presents a tech-

nique for transforming multi-dimensional information from

a visual language into a one-dimensional textual format suit-

able for typing rules. It employs conjunctions to merge the

two dimensions. Furthermore, encoding multi-dimensional

visual information can utilize either disjunction or conjunc-

tion. When conjunctions is used, both pieces of information

must be present for the combination to succeed. Conversely,

if one piece of information is optional, a disjunction should

be used.

The use of color in MNL has limitations when it comes to

displaying complex term types, such as the term type for HoF:

from (𝑠𝑡𝑟𝑖𝑛𝑔) to (from (𝑠𝑡𝑟𝑖𝑛𝑔) to (from (𝑠𝑡𝑟𝑖𝑛𝑔) to (𝑠𝑡𝑟𝑖𝑛𝑔))

or complex container types. Thus, MNL relies on text to

convey information about complex term types. Additionally,

combining patterns and colors could be considered as an

alternative way to represent complex term types.

8 Conclusion
Thiswork presents several interesting findings. First, it demon-

strates heuristic techniques for transforming text-based syn-

tax into block-based syntax. Second, it outlines how to con-

struct typing rules and constraint typing rules that convert

two-dimensional information into one-dimensional data,

along with their implementation for type validation in re-

active systems. Finally, it demonstrates techniques for im-

plementing constraint typing rules within reactive blocks,

providing hints about the term type that can be connected

even when the block state is incomplete, partially complete,

or contains errors.

All of the above techniques are used to build reactive

systems, especially a reactive block with its capabilities to

provide visual clues about syntax, semantics, and pragmatic

conventions to the programmer. The capabilities of MNL

reactive blocks have been demonstrated in Section 5.

One aspect to consider for further development is provid-

ing information to programmers with limited color percep-

tion or those who are visually impaired.

Green’s research on cognitive dimensions of notations

[10] provides a helpful framework for analyzing the use

of shape, color, and text dimensions in MNL. In the next

step, it is essential to examine whether representing each

production rule with a single block is optimal, as there may

be more effective ways to convey grammatical information

to programmers. Additionally, we should evaluate whether

the suggestion box for term types is adequate in helping

programmers understand term type calculations, in order to

prevent incorrect function applications.

A Grammar, Type, Typing Rules, and
Algorithm

This appendix presents the text-based core grammars, the

term types and their colors, algorithms, as well as the new

typing rules.

𝑢𝑖𝑑 ::= identifier:
Identifier 𝑙𝑒𝑡𝑡𝑒𝑟 <𝑙𝑒𝑡𝑡𝑒𝑟 | 𝑑𝑖𝑔𝑖𝑡>∗

𝑐𝑜𝑛 ::= constant:
string 𝑠𝑡𝑟𝑖𝑛𝑔 | number 𝑛𝑢𝑚𝑏𝑒𝑟 | charac-
ter 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 | boolean 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 | unit

𝑝𝑎𝑡 ::= pattern:
𝑐𝑜𝑛 | any

𝑚𝑡𝑐 ::= matching:
is 𝑝𝑎𝑡 do 𝑒𝑥𝑝

𝑓 𝑖𝑒𝑙𝑑 ::= field:
Field 𝑢𝑖𝑑 = 𝑒𝑥𝑝

𝑝𝑎𝑟𝑎𝑚 ::= parameter:
Unit | ID 𝑢𝑖𝑑 Unit or identifier

𝑒𝑥𝑝 ::= expression:
𝑐𝑜𝑛 constant
| Application of 𝑒𝑥𝑝1 Over 𝑒𝑥𝑝2 function

Application
| Bound 𝑢𝑖𝑑 bound variable
| Lambda Parameter 𝑝𝑎𝑟𝑎𝑚 Expression
𝑒𝑥𝑝

lambda abstraction

| Condition When 𝑒𝑥𝑝1 Is true 𝑒𝑥𝑝2 Oth-
erwise 𝑒𝑥𝑝3

condition

| Sequence of Expression-1 𝑒𝑥𝑝1 . . .

Expression-n 𝑒𝑥𝑝𝑛

sequence of expr., n
≥ 2

| Let 𝑑𝑒𝑐 In ⟨ Expression-n 𝑒𝑥𝑝 ⟩+ let binding, , n ≥ 1
| Switch 𝑒𝑥𝑝 Case-1𝑚𝑡𝑐1 . . . Case-n𝑚𝑡𝑐𝑛 case analysis, n ≥ 2
| List constructor Empty list empty list
| List constructor ⟨Inhabitant-n 𝑒𝑥𝑝𝑛 ⟩+ list constructor, n ≥

1
| Tuple constructor ⟨Inhabitant-n 𝑒𝑥𝑝𝑛 ⟩+ tuple constructor, n

≥ 1
| Record constructor ⟨Field-n 𝑒𝑥𝑝𝑛 ⟩+ record constructor, n

≥ 1
| description 𝑒𝑥𝑝1 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑒𝑥𝑝2 binary operator
| description 𝑒𝑥𝑝 unary operator

𝑑𝑒𝑐 ::= declaration:
Function 𝑢𝑖𝑑 Parameter 𝑝𝑎𝑟𝑎𝑚 Expres-
sion 𝑒𝑥𝑝

function abstraction

| Variable 𝑢𝑖𝑑 bind to 𝑒𝑥𝑝 variable definition
| 𝑑𝑒𝑐1 . . . 𝑑𝑒𝑐𝑛 sequence, n ≥ 2

𝑝𝑟𝑜𝑔 ::= program:
MNL 𝑑𝑒𝑐 the root of the

grammar
legend:

- Bold = terminal - ⟨⟩ = group

- Italic = non terminal - . . . = sequence

- 𝑋 + = one or more 𝑋

Figure 14. Core grammar
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𝐹𝑇 ::= field type:
field 𝑙𝑒𝑡𝑡𝑒𝑟 <𝑙𝑒𝑡𝑡𝑒𝑟 | 𝑑𝑖𝑔𝑖𝑡>∗ with type𝑇

𝑃𝑇 ::= primitive type:
number | string | character | boolean | unit

𝑇 ::= type:
𝑃𝑇 primitive
| any polymorphic
| list of 𝑇 list
| tuple of (𝑇1 ⟨and𝑇𝑛 ⟩∗) tuple, n ≥ 2
| record of {𝐹𝑇1 ⟨and 𝐹𝑇𝑛 ⟩∗} record, n ≥ 2
| ’⟨𝑢𝑝𝑝𝑒𝑟𝑐𝑎𝑠𝑒 ⟩+ type variable
| function from (𝑇 ) to (𝑇 ) function
| match 𝑃𝑇 do𝑇 match-do
| nothing nothing

Figure 15. Type

Type Color

number #FED049

string #228b22

character #808000

boolean #F08080

unit #800000

any #778899

list #000075

Type Color

nothing #008B8B

function #4363D8

tuple #911EB4

record #FF8C00

match-do #9A6324

type variable #2F4F4F

error #FF0000

Figure 16. Type’s Color

𝐺𝑇 ::= grammar type:
Identifier | Expression | Pattern | Match-
Do | Field | Parameter | Declaration | Pro-
gram

𝐵𝑇 ::= block type:

𝐺𝑇 ⊗ 𝑇

Figure 17. Type of the Block

Algorithm 1: GT validation

Event :Connecting block
Reaction :Connect or disconnect blocks
Initial :𝐺𝑇𝑖𝑛𝑝𝑢𝑡 ← GT of input notch

1 𝐺𝑇𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘 ← GT of the child block’s output notch
2 if 𝐺𝑇𝑖𝑛𝑝𝑢𝑡 = 𝐺𝑇𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘 then
3 connect blocks
4 else
5 disconnect blocks
6 end

Algorithm 2:Mono color block

Action :any changes on the block

Reaction :update message

Initial :𝑇 ← the block typing rule; 𝑐𝑜𝑙𝑜𝑟 ← color of
𝑇 ; 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ← premises of the block typing
rule

1 𝑒𝑟𝑟𝑜𝑟 ← ∅
2 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ← premises of the block typing rule
3 𝐵𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒 ← state of the block
4 if 𝐵𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒 = 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 then
5 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 ← errors from child blocks
6 if 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 = ∅ then
7 𝑇𝑐ℎ𝑖𝑙𝑑𝑠 ← T of the child blocks
8 if 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ≡ 𝑇𝑐ℎ𝑖𝑙𝑑𝑠 then
9 Update premises // if necessary

10 else
11 𝑒𝑟𝑟𝑜𝑟 ← "type mismatch"

12 end
13 else
14 𝑒𝑟𝑟𝑜𝑟 ← 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠

15 end
16 else if 𝐵𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒 = partialComplete then
17 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 ← errors of child blocks
18 𝑒𝑟𝑟𝑜𝑟 ← 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 ∪ "partial complete error"

19 else
20 𝑒𝑟𝑟𝑜𝑟 ← "incomplete error"

21 end
22 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐵𝑜𝑥 ← update suggestion type colorbox

50



The MNL: A Block-Based Functional Programming Language with Reactive Blocks PAINT ’25, October 12–18, 2025, Singapore, Singapore

Algorithm 3: Chameleon block

Action :any changes on the block

Reaction :update the block color and type, or update error

messages

Initial : 𝑇 ← 𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑐 ; 𝑐𝑜𝑙𝑜𝑟 ← color of 𝑇 ;

𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ← premises of the block typing
rule

1 𝑇 ← 𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑐

2 𝑒𝑟𝑟𝑜𝑟 ← ∅
3 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ← premises of the block typing rule
4 𝐵𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒 ← state of the block
5 if 𝐵𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒 = complete then
6 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 ← errors of child blocks
7 if 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 = ∅ then
8 𝑇𝑐ℎ𝑖𝑙𝑑𝑠 ← T of the child blocks
9 if 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ≡ 𝑇𝑐ℎ𝑖𝑙𝑑𝑠 then
10 𝑇 ← type inference
11 Update premises // if necessary

12 else
13 𝑒𝑟𝑟𝑜𝑟 ← "type mismatch"

14 end
15 else
16 𝑒𝑟𝑟𝑜𝑟 ← 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠

17 end
18 else if 𝐵𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒 = partialComplete then
19 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 ← errors of child blocks
20 𝑒𝑟𝑟𝑜𝑟 ← 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 ∪ "partial complete error"

21 else
22 𝑒𝑟𝑟𝑜𝑟 ← "incomplete error"

23 end
24 𝑐𝑜𝑙𝑜𝑟 ← color of 𝑇

// the tuple constructor block only

25 Update smart block
26 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐵𝑜𝑥 ← update suggestion type colorbox

Algorithm 4: Function block

Action :any changes on the block

Reaction :update the type, update nested function’s type,

or update error messages

Initial :𝑇 ← the default function type; 𝑐𝑜𝑙𝑜𝑟 ←
color of 𝑇 ; 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ← premises of the
block typing rule

1 𝑇 ← the default function type
2 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ← premises of the block typing rule
3 𝑒𝑟𝑟𝑜𝑟 ← ∅
4 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟 ← ∅
5 𝐵𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒 ← state of the block
6 if 𝐵𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒 = complete then
7 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 ← errors of child blocks
8 if 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 = ∅ then
9 𝑇𝑐ℎ𝑖𝑙𝑑 ← T of the child block

10 if circularity detected then
11 𝑒𝑟𝑟𝑜𝑟 ← ’circularity detected’

12 else
13 𝑇 ← type inference
14 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ← Update premises
15 trigger updates for all child blocks
16 if 𝑇𝑝𝑟𝑒𝑚𝑖𝑠𝑒𝑠 ≠ 𝑇𝑐ℎ𝑖𝑙𝑑𝑠 then
17 𝑒𝑟𝑟𝑜𝑟 ← ’type mismatch’

18 end
19 end
20 else
21 𝑒𝑟𝑟𝑜𝑟 ← 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠

22 end
23 else if 𝐵𝑙𝑜𝑐𝑘𝑆𝑡𝑎𝑡𝑒 = partialComplete then
24 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 ← errors of child blocks
25 𝑒𝑟𝑟𝑜𝑟 ← 𝑐ℎ𝑖𝑙𝑑𝐵𝑙𝑜𝑐𝑘𝑠𝐸𝑟𝑟𝑜𝑟𝑠 ∪ ’partial complete error’

26 else
27 𝑒𝑟𝑟𝑜𝑟 ← ’incomplete error’

28 end
29 𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝐵𝑜𝑥 ← update suggestion type colorbox
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Γ ⊢ ♦ 𝑣 : 𝐸𝑥𝑝 ⊗ 𝑇
BT-Const

Γ ⊢ ♦ 𝑣 : 𝑃𝑎𝑡 ⊗ 𝑇
BT-Pat

Γ ⊢ ID 𝑛 : 𝐼𝑑𝑟 ⊗ 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
BT-Id

Γ ⊢ Unit : 𝑃𝑎𝑟 ⊗ 𝑢𝑛𝑖𝑡
BT-ParamEmpty

Γ ⊢ 𝑏 : 𝐼𝑑𝑟 ⊗ 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
Γ ⊢ ID 𝑏 : 𝑃𝑎𝑟 ⊗ 𝑇

BT-Param

legend (abbr. of GT):

Dec = Declaration, Exp = Expression, Pat = Pattern,

Idr = Identifier, Par = Parameter, ♦ = terminal in constant/ pattern

Figure 18. Typing rules in normal form and refinement

typing rule of Parameter

Γ ⊢ 𝑏1 : 𝐼𝑑𝑟 ⊗ 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
Γ ⊢ 𝑏 : 𝑃𝑎𝑟 ⊗ 𝑇 ∈ Γ

Γ ⊢ Bound 𝑏1 : 𝐸𝑥𝑝 ⊗ 𝑇
BT-BoundParam

Γ ⊢ 𝑏1 : 𝐼𝑑𝑟 ⊗ 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
Γ ⊢ 𝑏 : 𝐷𝑒𝑐 ⊗ 𝑇 ∈ Γ

Γ ⊢ Bound 𝑏1 : 𝐸𝑥𝑝 ⊗ 𝑇
BT-BoundDec

Γ ⊢ 𝑏1 : 𝐼𝑑𝑟 ⊗ 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
Γ, 𝑏2 : 𝑃𝑎𝑟 ⊗ 𝑇1 ⊢ 𝑏3 : 𝐸𝑥𝑝 ⊗ 𝑇2
Γ ⊢ Function 𝑏1 Parameter 𝑏2�
Expression 𝑏3 : 𝐷𝑒𝑐 ⊗ 𝑇1 → 𝑇2

BT-DecFunc

Γ ⊢ 𝑏1 : 𝐼𝑑𝑟 ⊗ 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 Γ ⊢ 𝑏2 : 𝐸𝑥𝑝 ⊗ 𝑇
Γ ⊢ Variable 𝑏1 bind to 𝑏2 : 𝐷𝑒𝑐 ⊗ 𝑇

BT-DecVar

Figure 19. Refinement typing rules
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