
Dualizing Generalized Algebraic Data
Types by Matrix Transposition

Klaus Ostermann(�) and Julian Jabs

University of Tübingen, Germany
{klaus.ostermann, julian.jabs}@uni-tuebingen.de

Abstract. We characterize the relation between generalized algebraic
datatypes (GADTs) with pattern matching on their constructors one
hand, and generalized algebraic co-datatypes (GAcoDTs) with copattern
matching on their destructors on the other hand: GADTs can be con-
verted mechanically to GAcoDTs by refunctionalization, GAcoDTs can
be converted mechanically to GADTs by defunctionalization, and both
defunctionalization and refunctionalization correspond to a transposition
of the matrix in which the equations for each constructor/destructor pair
of the (co-)datatype are organized. We have defined a calculus, GADTT ,
which unifies GADTs and GAcoDTs in such a way that GADTs and
GAcoDTs are merely different ways to partition the program.
We have formalized the type system and operational semantics ofGADTT

in the Coq proof assistant and have mechanically verified the following
results: 1) The type system of GADTT is sound, 2) defunctionalization
and refunctionalization can translate GADTs to GAcoDTs and back, 3)
both transformations are type- and semantics-preserving and are inverses
of each other, 4) (co-)datatypes can be represented by matrices in such
a way the aforementioned transformations correspond to matrix trans-
position, 5) GADTs are extensible in an exactly dual way to GAcoDTs;
we thereby clarify folklore knowledge about the “expression problem”.
We believe that the identification of this relationship can guide future
language design of “dual features” for data and codata.

1 Introduction

The duality between data and codata, between construction and destruction,
between smallest and largest fixed points, is a long-standing topic in the PL
community. While some languages, such as Haskell, do not distinguish explicitly
between data and codata, there has been a “growing consensus” [1] that the two
should not be mixed up. Many ideas that are well-known from the data world
have counterparts in the codata world. One work that is particularly relevant
for this paper are copatterns, also proposed by Abel et al. [1]. Using copatterns,
the language support for codata is very symmetrical to that for data: Data
types are defined in terms of constructors, functions consuming data are defined
using pattern matching on constructors; codata types are defined in terms of
destructors, functions producing codata are defined using copattern matching
on destructors.

Another example of designing dual features for codata is the recently pro-
posed codata version of inductive data types [37]. However, coming up with these
counterparts requires ingenuity. The overarching goal of this work is to replace
the required ingenuity by a mechanical derivation. A key idea towards this goal
has been proposed by Rendel et al. [32], namely to relate the data and codata
worlds by refunctionalization [16] and defunctionalization [33, 17].

Defunctionalization is a global program transformation to transform higher-
order programs into first-order programs. By defunctionalizing a program, higher-
order function types are replaced by sum types with one variant per function
that exists in the program. For instance, if a program contains two functions of
type Nat → Nat , then these functions are represented by a sum type with two
variants, one for each function, whereby the type components of each variant
store the content of the free variables that show up in the function definition.
Defunctionalized function calls become calls to a special first-order apply func-
tion which pattern-matches on the aforementioned sum type to dispatch the call
to the right function body.

Refunctionalization is the inverse transformation, but traditionally it only
works (easily) on programs that are in the image of defunctionalization [16]. In
particular, it is not clear how to refunctionalize programs when there is more
than one function (like apply) that pattern-matches on the same data type.
Rendel et al. [32] have shown that this problem goes away when functions are
generalized to arbitrary codata, because then every pattern-matching function
in a program to be refunctionalized can be expressed as another destructor.
Functions are the special codata type with only one apply destructor. Without
parametric polymorphism, however, which is not available in the (co)data lan-
guages of Rendel et al. [32], we have to define a new function codata type for
each pair of input and output types that we want to define higher-order func-
tions for. The code below shows how a new first-class function square (that can
be passed as an argument and returned as a result) from Nat to Nat may be
defined by a codata generator function with return type FunctionNatNat, where
copattern matching is used to define the behavior of the first-class function when
it is applied with some input n.

codata FunctionNatNat where

apply(FunctionNatNat, Nat): Nat

function square(): Function where

apply(square(),n) = n * n

The main goal of this work is to extend the de- and refunctionalization corre-
spondence between data and codata to generalized algebraic datatypes (GADTs)
[41, 8] and their codata counterpart, which we call Generalized Algebraic Codata
types (GAcoDTs). More concretely, this paper makes the following contributions.

– We present the syntax, operational semantics, and type system of a language,
GADTT , that can express both GADTs and GAcoDTs. In this language,

GADTs and GAcoDTs are unified in such a way that they are merely two
different representations of an abstract “matrix” interface.

– We show that the type system is sound by proving progress and preservation
[40].

– We formally define defunctionalization and refunctionalization, observe that
they correspond to matrix transposition, and prove that GADTs and GAcoDTs
are indistinguishable after hiding them behind the aforementioned matrix
interface. We conclude that defunctionalization and refunctionalization pre-
serve both operational semantics and typing.

– We prove that both GADTs and GAcoDTs can be extended in a modular way
(with separate type checking) by “adding rows” to the corresponding matrix.
Due to their matrix transposition relation, this means that the extensibility
is exactly dual, which clarifies earlier informal results on the “expression
problem” [38, 34, 11].

– The language and all results have been formalized and mechanically verified
in the Coq proof assistant. The Coq sources are available in the supplemental
material that accompanies this submission.

– As a small side contribution, if one considers only the GADT part of the
language, this is to the best of our knowledge the first mechanically verified
formalization of GADTs. It is also simpler than previous formalizations of
GADTs because it is explicitly typed and hence avoids the complications of
type inference.

The remainder of this paper is structured as follows. In Section 2 we give an
informal overview of our main contributions by means of an example and using
conventional concrete syntax. In Section 3 we present the syntax, operational
semantics, and type system of GADTT . Section 4 presents the aforementioned
mechanically verified properties of GADTT . In Section 5, we discuss applications
and limitations of GADTT , talk about termination/productivity and directions
for future work, and describe how we formalized GADTT in Coq. Finally, Sec-
tion 6 discusses related work and Section 7 concludes.

2 Informal Overview

Figure 1 illustrates the language design of GADTT in terms of an example.
The left-hand side shows an example using GADTs and functions that pattern-
match on GADT constructors. The right-hand side shows the same example
using GAcoDTs and functions that copattern-match on GAcoDT destructors.
The right-hand side is the refunctionalization of the left hand side; the left-hand
side is the defunctionalization of the right-hand side.

Simply-typed (Co)Datatypes. Let us first look at the Nat (co)datatype. Ev-
ery data or codata type has an arity : The number of type arguments it re-
ceives. Since GADTT does only feature types of kind *, we simply state the
number of type arguments in the (co)data type declaration. Nat receives zero

data Nat[0] where

zero(): Nat

succ(Nat): Nat

function add(Nat,Nat): Nat where

add(zero(), x) = x

add(succ(y),x) = succ(add(y,x))

data List[1] where

nil[A](): List[A]

cons[A](A, List[A]): List[A]

function length[A](List[A]): Nat w..

length[_](nil[_]) = 0

length[B](cons[_](x,xs)) =

succ(length[B](xs))

function sum(List[Nat]): Nat

sum(nil[_]) = 0

sum(cons[_](x,xs)) = x + sum(xs)

data Tree[1] where

node(Nat): Tree[Nat]

branch[A](List[Tree[A]])

: Tree[List[A]]

function unwrap(Tree[Nat]): Nat w..

unwrap(node(n)) = n

unwrap(branch[_](xs)) = impossible

function width[A](Tree[A]): Nat w..

width[_](node(n)) = 0

width[_](branch[C](xs)) =

length[C](xs)

codata Nat[0] where

add(Nat,Nat) : Nat

function zero(): Nat where

add(zero(),x) = x

function succ(Nat): Nat where

add(succ(y),x) = succ(add(y,x))

codata List[1] where

length[A](List[A]): Nat

sum(List[Nat]): Nat

function nil[A](): List[A] where

length[_](nil[_]) = 0

sum(nil[_]) = 0

function cons[A](A, List[A]): List[A] w..

length[B](cons[_](x,xs)) =

succ(length[B](xs))

sum(cons[_](x,xs)) = x + sum(xs)

codata Tree[1] where

unwrap(Tree[Nat]) : Nat

width[A](Tree[A]): Nat

function node(Nat): Tree[Nat] where

unwrap(node(n)) = n

width[_](node(n)) = 0

function branch[A](List[Tree[A]])

: Tree [List[A]] where

unwrap(branch[_](xs)) = impossible

width[_](branch[C](xs)) =

length[C](xs)

Fig. 1. The same example in the data fragment (left) and codata fragment (right)

List[1] nil[A](): List[A] cons[A](A, List[A]): List[A]

length[A](List[A]): Nat length[_](nil[_]) = 0
length[B](cons[_](x,xs)) =

succ(length[B](xs))

sum(List[Nat]): Nat sum(nil[_]) = 0 sum(cons[_](x,xs)) = x + sum(xs)

Fig. 2. Matrix representation of List GADT from Figure 1 (left)

List[1] length[A](List[A]): Nat sum(List[Nat]): Nat

nil[A](): List[A] length[_](nil[_]) = 0 sum(nil[_]) = 0

cons[A](A, List[A]): List[A]
length[B](cons[_](x,xs)) =

succ(length[B](xs))

sum(cons[_](x,xs)) =

x + sum(xs)

Fig. 3. Matrix representation of List GAcoDT from Figure 1 (right). This matrix is
the transposition of Figure 2.

type arguments, hence Nat illustrates the simply-typed setting with no type pa-
rameters. Functions in GADTT , like add on the left-hand side, are first-order
only; higher-order functions can be encoded as codata instead. Functions always
(co)pattern-match on their first argument. (Co)pattern matching on multiple
argument as well as nested and deep (co)pattern matching are not supported
directly and must be encoded via auxiliary functions. We see that the refunction-
alized version of Nat on the right-hand side turns constructors into functions,
functions into destructors, and pattern matching into copattern matching. Abel
et al. [1] use “dot notation” for copattern matching and destructor application;
for instance, they would write succ(y).add(x) = succ(y.add(x)) instead of
add(succ(y),x) = succ(add(y,x)) on the right-hand side of Figure 1. We use
the same syntax for constructor calls, function calls, and destructor calls because
then the equations are not affected by de- and refunctionalization.

Parametric (Co)Datatypes. The List datatype illustrates the classical special
case of GADTs with no indexing. Type arguments of constructors, functions, and
destructors are both declared and passed via rectangular brackets [...] (loosely
like in Scala). Like System F, GADTT has no type inference; all type annotations
and type applications must be given explicitly. GADTT has a redundant way of
binding type parameters. When defining an equation of a polymorphic function
with a polymorphic first argument, we use square brackets to bind both the
type parameters of the function and of the constructor/destructor on which we
(co)pattern-match. For instance, in the equation length[B](cons[](x,xs))

= ... on the left hand side, B is the type parameter of the length function,
whereas the underscore (which we use if the type argument is not relevant, we
could replace it by a proper type variable name) binds the type argument of the
constructor with which the list was created. In this example, we could have also
written the equation as length[_](cons[B](x,xs)) = ... because both type
parameters must necessarily be the same, but in the general case we need access
to both sets of type variables (as the next example will illustrate). It is important
that we do not (co)pattern-match on type arguments, since this would destroy
parametricity; rather, the [...] notation on the left hand side of an equation is
only a binding construct for type variables.

Type Parameter Binding. Of those two sets of type parameter bindings, the one
for functions is in a way always redundant because we could use the type variable
declaration inside the function declaration instead. For instance, in the equation
length[B](cons[_](x,xs)) = succ(length[B](xs)) on the left hand side we

could use the type parameter A of the enclosing function declaration instead.
However, in GADTT the scope of the type variables in the function declaration
does not extend to the equations and the type arguments must be bound anew
in every equation. The reason for that is that we want to design the equations
in such a way that they do not need to be touched when de/refunctionalizing a
(co)datatype. For instance, when refunctionalizing a datatype, a function decla-
ration is turned into a destructor declaration and what used to be a type argu-
ment that was bound in the enclosing function declaration becomes a type ar-
gument that is bound in a remote destructor declaration; to make type-checking
modular we hence need a local binding construct. Our main goal in designing
GADTT was not to make it convenient for programmers but to make the rela-
tion between GADTs and GAcoDTs as simple as possible; furthermore, a less
verbose surface syntax could easily be added on top.

If we look at the corresponding List codatatype on the right-hand side,
we see that the sum function from the left-hand side, which accepts only a list
of numbers, turns into a destructor that is only applicable to those instances
of List whose type parameter is Nat. This is similar to methods in object-
oriented programming whose availability depends on type parameters [29], but
here we see that this feature arises “mechanically” by the de/refunctionalization
correspondence.

GA(co)DTs. The Tree (co)datatype illustrates a usage of GA(co)DTs that can-
not be expressed with traditional parametric data types. We can see that by
looking at the return type of the constructors of the Tree datatype; they are
Tree[Nat] and Tree[List[A]] instead of Tree[A]. The Tree codatatype is also
using the power of GAcoDTs in the unwrap destructor1 because its first argu-
ment is different from Tree[A]. The GADT constructor node(Nat): Tree[Nat]

turns into a function that returns a Tree[Nat] on the right hand side. The Tree

example illustrates two additional issues that did not show up in the earlier
examples.

First, it illustrates that type unification may make some pattern matches
impossible, as illustrated by the unwrap(branch[_](xs)) = impossible equa-
tion on the left hand side. The equation is impossible, because the function
argument type Tree[Nat] cannot be unified with the constructor return type
Tree[List[A]].2 In GADTT , we require that pattern matching is always com-
plete, but impossible equations are not type-checked; the right-hand side can
hence be filled with any dummy term. Second, the equation width[](branch[C]

(xs)) = length[C](xs) illustrates the case where it is essential that we can
bind constructor type arguments; otherwise we would have no name for the type
argument we need to pass to length. Such type arguments are sometimes called
existential or phantom [8] because if we have a branch of type Tree[A], we only

1 The unwrap destructor is meant to be used to extract the number from a tree that
directly contains a number, i.e., a tree constructed with constructor node.

2 This fits with our intention that unwrap should only work on a node (which directly
contains a number).

know that there exists some type that was used in the invocation of the branch

constructor, but that type does not show up in the structure of Tree[A].
We see again how both impossible equations and the need to access construc-

tor type arguments translate naturally into corresponding features in the codata
world. For impossible equations, we need to check whether the first destructor
argument type can be unified with the function return type. Access to existential
constructor type arguments turns into access to local function types; conversely,
access to existential destructor type arguments in the codata world turns into
access to local function type arguments.

GADT = GAcoDTT . We can see that the relation between GADTs and GAcoDTs
is as promised when looking at Figure 2 and Figure 3. These two figures show
a slightly different representation of the List (co)datatype and associated func-
tions from Figure 1. In this presentation, we have dropped all keywords from
the language, such as function, data and codata. The reason for dropping
these keywords is that now function signatures in the data fragment look the
same as destructor signatures in the codata fragment, and constructor signa-
tures in the data fragment look the same as function signatures in the codata
fragment. Figure 2 organizes the datatype in the form of a matrix: the first
row lists the datatype and its constructor signatures, the first column lists the
signatures of the functions that pattern-match on the datatype, the inner cells
represent the equations for each combination of constructor and function. Fig-
ure 3 does the same for the List codatatype: The first row lists the codatatype
and its destructor signatures, the first column lists the signatures of functions
that copattern-match on the codatatype, the inner cells represent the equations
for each combination of function and destructor. We can now see that the re-
lation between GADTs and GAcoDTs is now indeed rather simple: It is just
matrix transposition.

An essential property of this transformation is that other (co)datatypes and
functions are completely unaffected by the transformation. For instance, the Tree
datatype (or codatatype, regardless of which version we use) looks the same,
regardless of whether we encode List in data or in codata style. Defunctional-
ization and refunctionalization are still global transformations in that we need
to find all functions that pattern-match on a datatype (for refunctionalization)
or find all functions that copattern-match on a codatatype (for defunctionaliza-
tion), but the rest of the program, including all clients of those (co)datatypes
and functions, remain the same.

Infinite codata, termination, productivity. The semantics of codata is usually
defined via greatest fixed point constructions that include the possibility to rep-
resent “infinite” structures, such as streams. This is not the focus of this work,
but since our examples so far did not feature such “infinite” structures but we
do not want to give the impression that our codata types do somehow lack the
expressiveness to express streams and the like, hence we show here an example
of how to encode a stream of zeros, both in the codata representation (left) and,
defunctionalized, in the data representation (right).

codata Stream where

head(Stream) : Nat

tail(Stream) : Stream

function zeros() : Stream

head(zeros()) = zero()

tail(zeros()) = zeros()

data Stream where

zeros() : Stream

function head(Stream) : Nat

head(zeros()) = zero()

function tail(Stream) : Stream

tail(zeros()) = zeros()
Codata is also often associated with guarded corecursion to ensure productivity.
In the copattern formulation of codata, productivity and termination coincide
[2]. Due to our unified treatment of data and codata, a single check is sufficient
for both termination/productivity of programs. In Section 5.3, we discuss a sim-
ple syntactic check that corresponds to both structural recursion and guarded
corecursion.

Properties of GADTT . In the remainder of this paper, we formalize GADTT in
a style similar to the matrix representation of (co)datatypes we have just seen.
We define typing rules and a small-step operational semantics and prove for-
mal versions of the following informal theorems: 1) The type system of GADTT

is sound (progress and preservation), 2) Defunctionalization and refunctional-
ization (that is, matrix transposition) of (co)datatypes preserves well-typedness
and operational semantics, 3) Both types of matrices are modularly extensible
in one dimension, namely by adding more rows to the matrix. This means that
we can modularly add constructors or destructors and their respective equa-
tions without breaking type soundness as long as the new equations are sound
themselves.

3 Formal Semantics

We have formalized GADTT and all associated theorems and proofs in Coq3.
Here we present a traditional representation of the formal syntax using context-
free grammars, a small-step operational semantics, and a type system.

We have formalized the language in such a way that we abstract over the
physical representation of matrices as described in the previous section, hence
we do not need to distinguish between GADTs and GAcoDTs. In the following,
we say constructor to denote either a constructor of a datatype, or a function
that copattern-matches on a codatatype. We say destructor to denote either a
function that pattern-matches on a datatype, or a destructor of a codatatype.
The language is defined in terms of constructors and destructors; we will later
see that GADTs and GAcoDTs are merely different organizations of destructors
and constructors.

3.1 Language Design Rationale

Our main goal in the formalization is to clarify the relation between GADTs and
GAcoDTs, and not to design a calculus that is convenient to use as a program-

3 Full Coq sources are available in the supplemental material.

ming language. Hence we have left out many standard features of programming
calculi that would have made the description of that relation more complicated.
In particular:

– Like System F, GADTT requires explicit type annotations and explicit type
application. Type inference could be added on top of the calculus, but this
is not in the scope of this work.

– (Co)pattern matching is restricted in that every function must necessar-
ily (co)pattern-match on its first argument, hence (co)pattern-matching on
multiple arguments or “deep” (co)pattern matching must be encoded by aux-
iliary functions. Pattern matching is only supported for top-level function
definitions; there is no “case” or “match” construct. Functions that are not
supposed to (co)pattern-match (like the polymorphic identity function) must
be encoded by a function that (co)pattern-matches on a dummy argument
of type Unit.

– First-class functions are supported in the form of codata, but anonymous
local first-class functions must be encoded via lambda lifting [3, 26], that is,
they must be encoded as top-level functions where the bindings for the free
variables are passed as an extra parameter.

– Due to the abstraction over the physical representation of matrices we have
not fixed the physical modular structure (a linearization of the matrix as
text) of programs . Type checking of matrices simply iterates over all cells
in an unspecified order. However, later on we will characterize GADTs and
GAcoDTs as two physical renderings of matrices and formally prove the way
in which those program organizations are extensible.

3.2 Notational Conventions

As usual, we use the same letters for both non-terminal symbols and meta-
variables, e.g., t stands both for the non-terminal in the grammar for terms
but inside inference rules it is a meta-variable that stands for any term. We
use the notation t to denote a list t1, t2, . . . , t|t|, where |t| is the length of the

list. We also use list notation to denote iteration, e.g., P, Γ ` t : T means
P, Γ ` t1 : T1, . . . , P, Γ ` t|t| : T|t|. To keep the notation readable, we write x : T

instead of x : T to denote x1 : T1, . . . , xn : Tn.
We use the notation t[x := t′] to denote the substitution of all free occurrences

of x in t by t′, and similarly T [X := T ′] and t[X := T ′] for the substitution of
type variables in types and terms, respectively.

3.3 Syntax

The syntax ofGADTT is defined in Figure 4. Types have the formm[T], wherem
is the name of a GADT or GAcoDT (in the following referred to as matrix name),
and square brackets to denote type application. Types can contain type variables
X. In the syntax of terms t, x denotes parameters that are bound by (co)pattern
matching and y denotes other parameters. A constructor call c[T](t) takes zero or

Syntax

S, T ::= m[T] | X Types

t ::= x | y | c[T](t) | d[T](t, t) Terms

C ::= c[X](T) : m[T] Constructor Signature

D ::= d[X](m[T], T) : T Destructor Signature

e ::= d[Y](c[X](x), y) = t Equations

M = (a, γ ∈ C, δ ∈ D, γ → δ → e) Matrices
P = m 7→fin M Programs
m ∈ Matrix names
d ∈ Destructor names
c ∈ Constructor names
x ∈ Pattern Variable Names
y ∈ Variable Names
X,Y ∈ Type Variables
a ∈ N Arities

Operational Semantics : P ` t→ t′

u, v ::= c[T](v) Values

E ::= c[T](v, [], t) | d[T](v, [], t) Evaluation Context

P ` t→ t′

P ` E[t]→ E[t′]
(E-Ctx)

m 7→ (a,C,D, lookup) ∈ P
D ∈ D D = d[. . .](m[. . .],. . .)

C ∈ C C = c. . .

lookup(C,D) = d[Y](c[X](x), y) = t

P ` d[S](c[T](v), u)→ t[X := S, Y := T][x := v, y := u]
(E-Fire)

Fig. 4. Syntax and Operational Semantics of GADTT

more arguments, whereas a destructor call d[T](t, t) takes at least one argument
(namely the one to be destructed). Both destructors and constructors can have
type parameters, which must be passed via square brackets.

A constructor signature c[X](T) : m[T] defines the number and types of pa-
rameters and the type parameters to the constructed type. Its output type cannot
be a type variable but must be some concrete matrix type m[T]. A destructor
signature, on the other hand, must have a concrete matrix type as its first ar-
gument and can have an arbitrary return type. Equations d[Y](c[X](x), y) = t
define what happens when a constructor c meets a destructor d. The x bind the
components of the constructor, whereas the y bind the remaining parameters of
the destructor call. We also bind both the type arguments to the constructor X
and the destructor Y , such that they can be used inside t. In many cases, the X
will provide access to the same types as Y , but in the general case we need both
because both constructors and destructors may contain phantom types [8].

Matrices M are an abstract representation of both GADTs and GAcoDTs,
together with the functions that pattern-match (for GADTs) or copattern-match
(for GAcoDTs) on the GA(co)DTs. A matrix has an arity a (the number of type
parameters it receives), a list of constructors γ, and a list of destructors δ. It also
has a lookup function that returns an equation for every constructor/destructor
pair on which the matrix is defined (hence the type of matrices is a dependent
type). There must be an equation for each constructor/destructor pair, but in
the case of impossible combinations, the equations are not type-checked and
some dummy term can be inserted. A program P is just a finite mapping from
matrix names to matrices.

3.4 Operational Semantics

We define the operational semantics, also in Figure 4, via an evaluation context
E, which, together with E-Ctx, defines a standard call-by-value left-to-right
evaluation order. Not surprisingly, the only interesting rule is E-Fire, which
defines the reduction behavior when a destructor meets a constructor. We look
up the corresponding matrix in the program and look up the equation for that
constructor/destructor pair. In the body of the equation, t, we perform two
substitutions: 1) We substitute the formal type arguments X and Y by the
current type arguments S and T , and 2) we substitute the pattern variables
x by the components v of the constructor and the variables y by the current
arguments u.

3.5 Typing

The typing and well-formedness rules are defined in Figure 5. Let us first look at
the typing of terms. The rules for variable lookup are standard. The constructor
rule T-Const checks that the number of type- and term arguments matches
the declaration and checks the type of all arguments, whereby the type variables

Term Typing : P, Γ ` t : T

Γ ::= ε | x : T, Γ | y : T, Γ Typing Contexts

x : T ∈ Γ
P, Γ ` x : T

(T-Pvar)

y : T ∈ Γ
P, Γ ` y : T

(T-Var)

P, Γ ` t : m[T][X := S]

m 7→ (. . . ,. . . d[X](m[T], U) : T . . . ,. . .) ∈ P
∀i.P, Γ ` ti : Ui[X := S]

|X| = |S| |U | = |t|
P, Γ ` d[S](t, t) : T [X := S]

(T-Dest)

. . . 7→ (. . . c[X](T) : T . . . ,. . . ,. . .) ∈ P
∀i.P, Γ ` ti : Ti[X := S]

|X| = |S| |T | = |t|
P, Γ ` c[S](t) : T [X := S]

(T-Const)

Well-Formedness

C = c[X ′](T) : m[S] |X| = |X ′|
D = d[Y ′](m[S′], T ′) : T |Y | = |Y ′|

all-distinct(X,Y) all-distinct(X ′, Y ′)

most-general-unifier(m[S],m[S′]) = σ

P, x : σ(T), y : σ(T ′) ` σ(t[X := X ′, Y := Y ′]) : σ(T)

P,m ` d[Y](c[X](x), y) = t OK in C,D
(Wf-Eq)

C =. . . : m[S] D =. . . (m[S′],. . .) :. . .

most-general-unifier(m[S],m[S′]) = error

P,m ` d[Y](c[X](x), y) = t OK in C,D
(Wf-Infsble)

|S| = a FV (T) ⊆ X FV (S) ⊆ X
c[X](T) : m[S] OK in m,a

(Wf-Constr)

|S| = a FV (S) ⊆ Y FV (T) ⊆ Y
d[Y](m[S], T) : T OK in m,a

(Wf-Destr)

∀C ∈ C, ∀D ∈ D,
C OK in m,a
D OK in m,a

P,m ` lookup(C,D) OK in C,D

all-names-distinct(D)

m 7→ (a,C,D, lookup) OK in P
(Wf-Matr)

∀m ∈ dom(P),m 7→ P (m) OK in P
all-names-distinct(ctors(P))

P OK
(Wf-Prog)

Fig. 5. Typing and Well-Formedness

are substituted by the type arguments of the actual constructor call. Construc-
tor names must be globally unique, hence the matrix to which the constructor
belongs is not relevant.

This is different for typing destructor calls (T-Dest). A destructor is resolved
by first determining the matrix m of the first destructor argument, and then the
destructor is looked up in that matrix. It is hence OK if the same destructor
name shows up in multiple matrices. When considering codata as “objects” like
in object-oriented programming [25], this corresponds to the familiar situation
that different classes can define methods with the same name. In the GADT
case, this corresponds to allowing multiple pattern-matching functions of the
same name that are disambiguated by the type of their first argument.

In Wf-Eq, we construct the appropriate typing context to type-check the
right hand side of equations. We allow implicit α-renaming of type variables
to prevent accidental name clashes (checked by all-distinct). We compute the
most general unifier of the two matrix types in the constructor and destruc-
tor, respectively, to combine the type knowledge about the matrix type from
the constructor and destructor type. If no such unifier exists, the equation is
vacuously well-formed because the particular combination of constructor and
destructor can never occur during execution of well-typed terms (Wf-Infsble).
Otherwise, we use the unifier σ and apply it to the given type annotations to
type-check the term t. A unifier σ is a mapping from type variables to types,
but we also use the notation σ(t) and σ(T) to apply σ to all occurrences of type
variables inside a term t or a type T , respectively.

Constructor and destructor signatures are well-formed if they apply the cor-
rect number of type parameters to the matrix type and contain no free type vari-
ables (Wf-Constr and Wf-Destr). A matrix is type-checked by making sure
that all constructor and destructor signatures are well-formed, that all equations
are well-formed for every constructor/destructor combination, and that destruc-
tor names are unique in the matrix (Wf-Matr). To check uniqueness of names,
we use all-names-distinct, which checks for a given list of signatures that all of
their names are distinct. A program is well-formed if all of its matrices typecheck
and the constructor signatures of the program (retrieved by ctors) are globally
unique (Wf-Prog).

3.6 GADTs and GAcoDTs

In the formalization so far, we have deliberately kept matrices abstract as a kind
of abstract data type. Now we can bring in the harvest of our language design.
GADTs and GAcoDTs are two different physical representations of matrices,
see Figure 6. They both contain nested vectors of equations and differ only in
the order of the indices. With GADTs, the column labels are constructors and
the row labels functions and a row corresponds to a function defined by pattern
matching, with one equation for each case of the GADT. With GAcoDTs, the
column labels are destructors, the row labels are functions, and a row corresponds
to a function defined by copattern matching, with one equation for each case of

MGADT = (a, γ ∈ C, δ ∈ D, {eD,C |D ∈ δ, C ∈ γ})
MGAcoDT = (a, γ ∈ C, δ ∈ D, {eC,D|C ∈ γ,D ∈ δ})

mkmatrix : MGADT +MGAcoDT →M
mkmatrix = — obvious; omitted

refunctionalize : MGADT →MGAcoDT

refunctionalize = transpose

defunctionalize : MGAcoDT →MGADT

defunctionalize = transpose

Fig. 6. GADTs and GAcoDTs

the GAcoDT. Hence both defunctionalize and refunctionalize, which swap the
respective organization of the matrix, are just matrix transposition.

4 Properties of GADT T

In this section, we prove type soundness for GADTT , the preservation of typ-
ing and operational semantics under de- and refunctionalization, and that our
physical matrix representations of GADTs and GAcoDTs are accurate with re-
spect to extension. All of these properties have been formalized and proven in
Coq, based upon our Coq formalization of the previous section’s formal syntax,
semantics, and type system.

4.1 Type Soundness

We start with the usual progress and preservation theorems.

Theorem 1 (Progress). If P is a well-formed program and t is a term with
no free type variables and P, ε ` t : T , then t is either a value v, or there exists
a term t′ such that P ` t→ t′.

The proof of this theorem is a simple induction proof using a standard canonical
forms lemma [31].

Preservation is much harder to prove. Often, preservation is proved using a
substitution lemma which states that the substitution of a (term) variable by a
term of the same type does not change the type of terms containing that term
variable [31]. In GADTT , this lemma looks as follows:

Lemma 1 (Term Substitution). If t is a list of terms with P, ε ` t : T and
t′ is a list of terms with P, ε ` t′ : T ′ and t is a term with P, x : T , y : T ′ ` t : T ,
then P, ε ` t[x := t, y := t′] : T

However, in E-Fire we perform both a substitution of terms and of types,
hence the term substitution lemma is not enough to prove preservation; we also
need a type substitution lemma.

Lemma 2 (Type Substitution). If P, Γ ` t : T , then P, Γ [X := T] ` t[X :=
T] : T [X := T]

The proof of this lemma requires various auxiliary lemmas about properties (such
as associativity) of type substitution. Taken together, these two lemmas are the
two main intermediate results to prove the desired preservation theorem.

Theorem 2 (Preservation). If P is a well-formed program and t is a term
with no free type variables and P, ε ` t : T and P ` t→ t′, then P, ε ` t′ : T .

4.2 Defunctionalization and Refunctionalization

The preservation of typing and operational semantics by de/refunctionalization
is a trivial consequence of the lemma below, which holds due to the fact that
both de- and refunctionalization is merely matrix transposition, see Figure 6,
and that the embedding mkmatrix of the physical matrices into the abstract
representation ignores the organization of the physical matrices.

Lemma 3 (Matrix Transposition).
∀m ∈MGADT , mkmatrix (m) = mkmatrix (refunctionalize(m)).
∀m ∈MGAcoDT , mkmatrix (m) = mkmatrix (defunctionalize(m)).

Corollary 1 (Preservation of typing and reduction).
De/refunctionalization of a matrix does not change the well-typedness of a

program or the operational semantics of a term.

4.3 Extensibility

So far, we have seen that our chosen physical matrix representations are amenable
to easy proofs of the preservation of properties under de- and refunctionaliza-
tion. However, are they also indeed accurate representations of GADTs and
GAcoDTs? GADTs and GAcoDTs are utilized due to their extensibility along
the destructor or constructor dimension, respectively, so we want this to be re-
flected by our representations.

We assume that matrices are represented as a traditional linear program by
reading them row-by-row. Adding a new row is a non-invasive operation (adding
to the program), whereas adding a column requires changes to the existing pro-
gram.

We want to be able to extend our matrix representations with a new row,
respectively representing the addition of a new destructor or constructor, without
breaking well-typedness as long as the newly added equations typecheck with

respect to the complete new program, and uniqueness of destructor/constructor
names is preserved (globally, in the constructor case)4.

In order to formally state that this is indeed the case, we first formally capture
extension of GADT and GAcoDT matrices with the following definitions. These
already include the preservation of local uniqueness as a condition, i.e., the name
of the newly added destructor or constructor must be fresh within the matrix.

Definition 1 (GADT extension). Consider an m ∈ MGADT with m =
(a, γ, δ, {eD,C |D ∈ δ, C ∈ γ}). For any D′ ∈ D,D′ 6∈ δ, and equations eD′,C ,
for each C ∈ γ, we call (a, γ, δ ∪ {D′}, {eD,C |D ∈ δ ∪ {D′}, C ∈ γ}) a GADT
extension of m with D′ and {eD′,C |C ∈ γ}.

Definition 2 (GAcoDT extension). Consider an m ∈ MGAcoDT with m =
(a, γ, δ, {eC,D|C ∈ γ,D ∈ δ}). For any C ′ ∈ C,C ′ 6∈ γ, and equations eC′,D,
for each D ∈ δ, we call (a, γ ∪ {C ′}, δ, {eC,D|C ∈ γ ∪ {C ′}, D ∈ δ}) a GAcoDT
extension of m with C ′ and {eC′,D|D ∈ δ}.

We now straightforwardly lift these definitions to programs: A program P ′ is
a GA(co)DT extension (with some signature and equations) of another program
P if their matrices are identical except for one matrix name, and the under-
lying physical matrix (packed with mkmatrix) assigned to this name under P ′

is GA(co)DT extension (with this signature and equations) of the underlying
physical matrix assigned under P .

Using this terminology we can now formally state and prove the extensibility
of GADTs and GAcoDTs:

Theorem 3 (Datatype Extensibility).
If P is a well-formed program, and P ′ is a GADT extension of P with D′ and
equations {eD′,C |C ∈ γ}, for the constructor signatures γ of the matrix to be
extended, such that P ′,m ` eD′,C OK in C,D’ for each C ∈ γ, then P ′ is well-
formed.

Theorem 4 (Codatatype Extensibility).
If P is a well-formed program, and P ′ is a GAcoDT extension of P with C ′,
where the name of C ′ is different from all constructor names in P , and equations
{eC′,D|D ∈ δ}, for the destructor signatures δ of the matrix to be extended, such
that P ′,m ` eC′,D OK in C’,D for each D ∈ δ, then P ′ is well-formed.

In other words, in both cases we can type-check each row of a matrix in isolation,
and if we put those rows together the resulting matrix and program containing
that matrix will be well-formed. The results justify the familiar physical repre-
sentation of programs where the variants of a GADT are fixed but we can freely
add new functions that pattern-match on that GADT (and correspondingly for
GAcoDTs).

4 The counterpart to this property on the side of the operational semantics is that the
reduction relation of the new program restricted to terms befitting the old program
equals the reduction relation of the old program; this however we omitted as it holds
trivially when uniqueness is preserved.

5 Discussion

In this section we discuss applications and limitations of our work, talk about
directions for future work, and describe the Coq formalization of the definitions
and proofs.

5.1 Applications

Language Design. The most obvious application of our approach is to guide
programming language design, namely by designing its features in such a way
that the correspondence by de/refunctionalization is preserved. We believe that
we can find “gaps” in existing languages by checking whether the correspond-
ing dual feature exists, or massaging the language feature in such a way that a
clear dual exists. For instance, on the datatype and pattern matching side, many
features exist that have no clear counterpart on the codata side yet, such as pat-
tern matching on multiple arguments, non-linear pattern matching, or pattern
guards [22]. Some vaguely dual features exist on the codata side understood as
“objects”, e.g. in the form of multi dispatch (such as [10]) or predicate dispatch
[21]. We believe that the relation between pattern matching on multiple argu-
ments and multi dispatch is a particularly interesting direction for future work,
since it would entail generalizing our two-dimensional matrices to matrices of
arbitrary dimension.

Arguably, codata is the essence of object-oriented programming [12]. In any
case, we believe that our design can also help to design object-oriented lan-
guage features. For instance, there has been previous works on “object-oriented”
GADTs [27, 20] using extensions of generic types with certain classes of con-
straints. For instance, in Kennedy and Russo’s work, a list interface could be
defined like this:

interface List<A> {

Integer size();

Integer sum() where A=Integer; // Kennedy & Russo’s syntax

}

If we compare this interface with the List codata type in Figure 1 (right hand
side), then we can see that such constraints are readily supported by GAcoDTs;
not because this feature was explicitly added but because it arises mechanically
from dualizing GADTs.

As another potential influence on language design, we believe that “closed-
ness” under defunctionalization and refunctionalization can be a desirable lan-
guage design quality that prevents oddities that things can be expressed better
using codata than using data (or vice versa). For instance, Carette et al. [5]
propose a program representation (basically again a form of Church encoding,
hence a codata encoding) that works in a simple Haskell’98 language but whose
datatype representation would require GADTs. This suggests a language design
flaw in that the codata fragment of functions supports a more powerful type

system than the data fragment of (non-generalized) algebraic data types. That
is, the type arguments of a codata generator function’s result type may be arbi-
trarily specialized, e.g., the result type might be List[Nat], while the type of a
constructor must be fully generic, e.g., List[A]. Our approach gives a criterion
on when the type systems for both sides are “in sync”.

codata Func[2] where

apply[A,B](Func[A,B], A) : B

codata Nat[0] where

fold[A](Nat,A,Func[A,A]) : A

fun zero(): Nat where

fold[A](zero(),z,s) = z

fun succ(Nat): Nat where

fold[A](succ(n),z,s) =

apply[A,A](s,fold[A](n,z,s))

data Nat[0] where

zero() : Nat

succ(Nat) : Nat

fun fold[A](Nat,A,Func[A,A]) : A where

fold[A](zero(),z,s) = z

fold[A](succ(n),z,s) =

apply[A,A](s, fold[A](n,z,s))

Fig. 7. Defunctionalizing Church-encoded numbers (left) yields Peano numbers with a
fold function (right)

De/Refunctionalization as a Programmer Tool. Semantics-preserving program
transformations are not only interesting on the meta-level of programming lan-
guage design but also because they define an equivalence relation on programs.
For instance, consider the program on the left-hand side of Figure 7, written
in our GAcoDT language. Nat is a representation of Church-encoded5 natural
numbers as a GAcoDT with arity zero and a singular destructor fold with a
type parameter A. Defunctionalizing Nat yields the familiar Peano numbers with
the standard fold function (right-hand side).

Such equivalences have been identified as being useful to identify different
forms of programs that are “the same elephant”. For instance, Olivier Danvy and
associates [17, 16] have used defunctionalization, refunctionalization, and some
other transformations such as CPS-transformation to inter-derive “semantic ar-
tifacts” such as big-step semantics, small-step semantics, and abstract machines
(“The inter-derivations illustrated here witness a striking unity of computation,
be this for reduction semantics, abstract machines, and normalization function:
they all truly define the same elephant.” – Danvy et al. [15]).

The applicability of these transformations is widened by our approach since
we support arbitrary codata and not just functions. Exploring these new possi-
bilities is an interesting area of future work.

5 This form of typed Church encoding is sometimes called Böhm-Berarducci encoding
[4].

Furthermore, programmers can employ our transformation as a tool for a
more practical purpose. Consider that at some point during the development of a
large software, it might have been determined that the extensibility dimension for
a particular aspect should be switched. That is, it is now thought that instead of
allowing to add new variants (constructors), the software would be better poised
by fixing the variants and allowing the addition of new operations (destructors),
or vice versa. In the case that at this point it is further possible to make a
closed-world assumption with regards to the particular type (represented as a
matrix), since clients of the code are known and can be dealt with, it might
seem reasonable to transpose the matrix representing that type. With GADTT ,
it is possible to do this independently of the other matrices in the program.
(As already discussed, GADTT in its present form doesn’t aim to be particularly
developer-friendly, but we expect further language layers to be placed on top of
GADTT to remedy this eventually.)

Compiler Optimizations. To be able to use our automatizable transformation
as a programmer tool, it was important to be able to make a closed-world as-
sumption, where we have the entire program, or more precisely, the part which
involves the matrix under consideration, at our disposal. A more automated pro-
cess where such a kind of assumption can often be readily made is compilation.
There, our matrix transposition transformation can be employed for a whole
program optimization (such as [6]), as follows. An opportunity for optimization
presents itself to the compiler when it is basically able to recognize an abstract
machine in the code; optimizing this abstract machine is then an intermediate
step, more generally applicable, that precedes hardware-specific optimizations
[18]. As outlined above, defunctionalization can turn higher-order programs into
first-order programs where this machine might be apparent. With our pair of
languages, using our readily automatizable defunctionalization (matrix transpo-
sition), it is possible to turn GAcoDT code into GADT code during the compila-
tion phase. Then the compiler can leverage the potentially recognizable abstract
machine form of the GADT code for its optimizations.

5.2 Limitations

As we said, our design rationale for GADTT was to clarify the relation between
GADTs and GAcoDTs, not to provide a convenient language for developers. Here
we discuss some ways to address the limitations resulting from that decision.

Local (Co)Pattern Matching, Including λ. A significant limitation of GADTT is
that (co)pattern matching is only allowed on the top-level; we don’t have “case”
(or “match”) constructs on the term level. Any local (co)pattern matching, how-
ever, can be converted to the top-level form by extracting it to a new top-level
function definition. Variables free within the (co)pattern matching term must be
passed to this function as arguments. In particular, anonymous local first-class
functions, i.e., λ expressions, are a form of local copattern matching which can
be encoded in this way; this particular conversion is traditionally called lambda
lifting.

(Co)Pattern Matching on Zero or More Arguments. (Co)pattern matching in
GADTT is only possible on a single, distinguished argument (in our presentation,
the first, but this is not important). Nested and multiple-argument matching can
be encoded by unnesting à la Setzer et al. [36], producing auxiliary functions.

In GADTT , it is further not possible to define a function without any (co)
pattern matching entirely. The workaround of (co)pattern matching on a dummy
argument of type Unit is simple, but it is not obvious how to reconcile this
encoding with the symmetry of de/refunctionalization.

Type Inference. We have deliberately avoided the question of type inference in
this work. In general, we expect that the ample existing works on type inference
for GADTs (such as Peyton Jones et al. [30], Schrijvers et al. [35], Chen and
Erwig [7]) can be adapted to our setting and will also work for GAcoDTs. We
see one complication, though: Due to the fact that destructors are only locally
unique in GADTT , the (co)datatype the destructor belongs to must first be
found via the type inferred for its distinguished, destructed argument. In other
words, we do not know which destructor signature to consider before we know
the destructed argument’s type. This means that a type inference system which
works inwards only, i.e., it discovers the types of the destructor arguments by
looking at the signature, possibly leaving unification variables, and then checks
that the recursively discovered types for the arguments conform, will not work.

5.3 Termination and Productivity

While termination and productivity are not in the focus of this paper, we want
to mention that our unified treatment of data and codata can also lead to a
unified treatment of termination and productivity.

Here we want to illustrate informally that a simple syntactic criterion is
sufficient to allow structural recursion and guarded corecursion. Syntactic ter-
mination checks are not expressive enough for many situations, hence we leave a
proper treatment of termination/productivity checking (such as with sized types
[2]) for future work; the purpose of this discussion is merely to illustrate that
termination checking could also benefit from unified data and codata and not to
propose a practically useful termination checker.

The basic idea is to restrict destructor calls in the right-hand sides of equa-
tions to have the form d[T](x, t) instead of d[T](t, t). That is to say, in destructor
calls, we only allow variables from within the constructor pattern of the left-hand
side This criterion already guarantees termination (and hence also productivity
[2]) in our system, i.e. the finiteness of all reduction sequences, which can be
shown with the usual argument of a property that strictly decreases under re-
duction. A reduction step in GADTT with right-hand sides restricted like that
strictly decreases, under lexicographic order, the pair of

1. the maximum of all the first (destructed) arguments depths in destructor
calls of the term, and

2. the sequence which counts how often each destructed argument depth ap-
pears in the term, starting with the maximum depth and going downward;
those sequences are themselves lexicographically ordered.

This strict decrease can be proved by induction on the derivation of the reduc-
tion step. Since there are no infinitely decreasing sequences of these pairs, any
reduction sequence must be finite. Note that our criterion in itself excludes far
too many programs to be anywhere near practical, but it is readily conceivable
how to relax it to only recursive calls together with a check that excludes mutual
recursion.6

Let’s look at Figure 7 once more to illustrate that this criterion corresponds
to both structural recursion and guarded corecursion. In the right-hand side of
Figure 7 we see that the first argument to the recursive call in the last line
is n, which is allowed by our restriction because it is a syntactic part of the
original input, succ(n) (structural recursion). The call to apply is not a problem
because it is not a recursive call.7 At the same time, if we look at the last line
in the left-hand side of Figure 7, we see that the criterion also corresponds to
guarded corecursion. With copatterns, guarded corecursion means that we do
not destruct the result of a recursive call (the “guard” itself is implicit in the
pattern on the left-hand side of the equation). However, destructing that result
would mean that we would have to call a destructor with the recursive call as
its first argument, which is again forbidden by the syntactic criterion.

5.4 Going beyond System F-like polymorphism

A particularly interesting direction for future work is to extend GADTT and go
beyond the System F-like polymorphism. For instance, Fω contains a copy of
the simply-typed lambda calculus on the type level. Could one also generalize
type-level functions to arbitrary codata and maybe use a variant of GADTT

on the type level? Can dependent products like in the calculus of constructions
[13] be generalized in a similar way? Can inductive types like in the calculus
of inductive constructions be formulated such that there is a dual that is also
related by de/refunctionalization? Thibodeau et al. [37] have formulated such a
dual, but whether it can be massaged to fit into the setting described here is not
obvious.

5.5 Coq Formalization

Our Coq formalization is quite close to the traditional presentation chosen for
this paper, but there are some technical differences. Both term and type variables
are encoded via de Bruijn indices, which is rather standard for programming

6 For instance one might request the programmer to order the destructor names such
that in equations for a certain destructor only destructors of lower order may be
called.

7 As long as we avoid mutual recursion, for instance by ensuring fold > apply.

language mechanization. More interestingly, the syntax of the language in the
Coq formalization expresses some of the constraints we express here via typing
rules instead via dependent types. Specifically, terms and types are indexed
by the type variables that can appear inside. To represent matrices, we have
developed a small library of dependently typed tables (where the cell types
can depend on the row and column labels), such that the matrix type already
guarantees that all type variables that show up in terms and types are bound.
An earlier version of the formalization and the soundness proof used explicit
well-formedness constraints to guarantee that all type variables are bound; the
type soundness proof for this version was about twice as long as the one using
dependent types. On the flip side, we had to “pay” for using the dependent types
in the form of many annoying “type casts” in definitions and theorems owing
to the fact that Coq’s equality is intensional and not extensional [9, Sec. 10.3].
Finally, instead of using an evaluation context to define evaluation order like
we did in Figure 4, we have used traditional congruence rules. In the reduction
relation as formalized in Coq, a single step can actually correspond to multiple
steps in the formalization presented in the paper; however, this is just a minor
technicality to slightly simplify the proofs.

6 Related Work

“Theoreticians appreciate duality because it reveals deep symmetries. Practi-
tioners appreciate duality because it offers two-for-the-price-of-one economy.”
This quote from Wadler [39] describes the spirit behind the design of GADTT ,
but of course this is not the first paper to talk about duality in programming
languages. We have already discussed the most closely related works in previous
sections; here, we compare GADTT with theoretical calculi with related dual-
ity properties and point out an aspect of practical programming for which the
duality of GADTT is relevant.

Codata. Hagino [23] pioneered the idea of dualizing data types: Whereas data
types are used to define a type by the ways to construct it, codatatypes are dual
to them in the sense that they are specified by their deconstructions. Abel et al.
[1] introduce copatterns which allow functions producing codata to be defined
by matching on the destructors of the result codatatype, dually to matching on
the constructors of the argument datatype. All these developments occur in a
world where function types are a given. The symmetric codata and data lan-
guage fragments proposed by Rendel et al. [32] deviate from this: By enhancing
destructor signatures with argument types, they provide a form of codata that
is a generalization of first-class functions. Both the works by Rendel et al. and
Abel et al. are simply-typed.

The (co)datatypes in the calculus of Downen and Ariola [19] also allow for
user-defined function types. Their focus is different from ours, though, as they
are mostly interested in evaluation strategies and their duality, and with regards
to their calculus itself they work in an untyped setting. What is interesting in

comparison with GADTT is how their (co)datatype declarations and signatures
are inherently more symmetric as they essentially describe a type system for the
parametric sequent calculus. As such, the position of additional arguments in
the destructor signatures has a mirror counterparts in constructor signatures (to
highlight this, Downen and Ariola refer to destructors as “co-constructors”).

Duality of Computations and Values. Staying on with the idea of avoiding func-
tion types as primitives for a moment, Wadler [39] presents a “dual calculus” in
which the previously astonishing result that call-by-name is De Morgan-dual to
call-by-value [14] is clarified by defining implication (corresponding to function
types via the Curry-Howard isomorphism) in two different ways dependent on
the intended corresponding evaluation regime. A somewhat similar approach, but
perhaps more directly related to the data/codata duality, that also deals with
the “troubling” coexistence of call-by-value and call-by-name, was proposed by
Levy [28]. Levy presents a calculus with a new evaluation regime, call-by-push
value (CBPV), which subsumes call-by-value and call-by-name by encoding the
local choice for either in the terms of the calculus. More specifically, there are
two kinds of terms in the CBPV calculus: computations and values, which can
be inter-converted by “thunking” and “forcing”. The terms for computations
and values are said to be of positive type and of negative type, respectively. Thi-
bodeau et al. [37] have built their calculus, which extends codatatypes to indexed
codatatypes, on top of CBPV, with datatypes being positive and codatatypes
being negative. We think that, when extending GADTT with local (co)pattern
matching on the term level, perhaps with pattern and copattern matching terms
mixed, it might be helpful to similarly recast the resulting language as a modi-
fication of the CBPV calculus of Levy.

7 Conclusions

We have presented a formal calculus, GADTT , which uniformly describes both
GADTs and their dual, GAcoDTs. GADTs and GAcoDTs can be converted
back and forth by defunctionalization and refunctionalization, both of which
correspond to a transposition of the matrix of the equations for each pair of con-
structor/destructor. We have formalized the calculus in Coq and mechanically
verified its type soundness, its extensibility properties, and the preservation of
typing and operational semantics by defunctionalization and refunctionalization.

We believe that our work can be of help for future language design since it
describes a methodology to get a kind of “sweet spot” where data and codata
constructs (including functions) are “in sync”. We think that it can also be useful
as a general program transformation tool, both on the program level as a kind
of refactoring tool, but also as part of compilers and runtime systems. Finally,
since codata is quite related to objects in object-oriented programming, we hope
that our approach can help to clarify their relation and design languages which
subsume both traditional functional and object-oriented languages.

Acknowledgments. We would like to thank Tillmann Rendel and Julia Trieflinger
for providing some early ideas for the design of what eventually became GADTT .
This work was supported by DFG project OS 293/3-1.

References

1. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: Programming infinite
structures by observations. In: Proceedings of the Symposium on Principles of
Programming Languages. pp. 27–38. ACM (2013)

2. Abel, A.M., Pientka, B.: Wellfounded recursion with copatterns: A unified ap-
proach to termination and productivity. In: Proceedings of the 18th ACM SIG-
PLAN International Conference on Functional Programming. pp. 185–196. ICFP
’13, ACM, New York, NY, USA (2013)

3. Augustsson, L.: A compiler for lazy ml. In: Proceedings of the 1984 ACM Sym-
posium on LISP and Functional Programming. pp. 218–227. LFP ’84, ACM, New
York, NY, USA (1984)

4. Böhm, C., Berarducci, A.: Automatic synthesis of typed lambda-programs on term
algebras. Theoretical Computer Science 39, 135–154 (1985)

5. Carette, J., Kiselyov, O., Shan, C.: Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. Journal of Functional Program-
ming 19(5), 509–543 (Sep 2009)

6. Chambers, C., Dean, J., Grove, D.: Whole-program optimization of object-oriented
languages. University of Washington Seattle, Technical Report 96-06 2 (1996)

7. Chen, S., Erwig, M.: Principal type inference for gadts. In: Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 416–428. POPL ’16, ACM, New York, NY, USA (2016)

8. Cheney, J., Hinze, R.: First-class phantom types. Tech. rep., Cornell University
(2003)

9. Chlipala, A.: Certified Programming with Dependent Types. MIT Press (2017),
http://adam.chlipala.net/cpdt/

10. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: Modular open
classes and symmetric multiple dispatch for Java. In: Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages and Applications. pp. 130–
145. ACM (2000)

11. Cook, W.R.: Object-oriented programming versus abstract data types. In: Pro-
ceedings of the REX Workshop / School on the Foundations of Object-Oriented
Languages. pp. 151–178. Springer-Verlag (1990)

12. Cook, W.R.: On understanding data abstraction, revisited. In: Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages and Applica-
tions. pp. 557–572. ACM (2009)

13. Coquand, T., Huet, G.: The calculus of constructions. Inf. Comput. 76(2-3), 95–120
(Feb 1988)

14. Curien, P.L., Herbelin, H.: The duality of computation. In: Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Programming. pp.
233–243. ICFP ’00, ACM, New York, NY, USA (2000)

15. Danvy, O., Johannsen, J., Zerny, I.: A walk in the semantic park. In: Proceed-
ings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation. pp. 1–12. PEPM ’11, ACM, New York, NY, USA (2011)

16. Danvy, O., Millikin, K.: Refunctionalization at work. Science of Computer Pro-
gramming 74(8), 534–549 (2009)

17. Danvy, O., Nielsen, L.R.: Defunctionalization at work. In: Proceedings of the
Conference on Principles and Practice of Declarative Programming. pp. 162–174
(2001)

18. Diehl, S., Hartel, P., Sestoft, P.: Abstract machines for programming language
implementation. Future Generation Computer Systems 16(7), 739–751 (2000)

19. Downen, P., Ariola, Z.M.: The duality of construction. In: ESOP. pp. 249–269
(2014)

20. Emir, B., Kennedy, A., Russo, C., Yu, D.: Variance and generalized constraints for
cˆ# generics. In: ECOOP. pp. 279–303. Springer (2006)

21. Ernst, M.D., Kaplan, C., Chambers, C.: Predicate dispatching: a unified theory
of dispatch. In: Proceedings of the European Conference on Object-Oriented Pro-
gramming. pp. 186–211. Springer LNCS 1445 (1998)

22. Erwig, M., Jones, S.P.: Pattern guards and transformational patterns. Electronic
Notes in Theoretical Computer Science 41(1), 3 (2001)

23. Hagino, T.: Codatatypes in ml. Journal of Symbolic Computation 8(6), 629–650
(1989)

24. Hirzel, M., Nagpurkar, P.: Dualities in programming languages. In: Proc. of ACM
Conference on Programming Language Design and Implementation, PLDI (2010)

25. Jacobs, B.: Objects and classes, coalgebraically. In: Object Orientation with Par-
allelism and Persistence, pp. 83–103. Springer-Verlag (1995)

26. Johnsson, T.: Lambda lifting: Transforming programs to recursive equations. In:
Jouannaud, J.P. (ed.) Functional Programming Languages and Computer Archi-
tecture: Nancy, France, September 16–19, 1985. pp. 190–203. Springer (1985)

27. Kennedy, A., Russo, C.V.: Generalized algebraic data types and object-oriented
programming. In: Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages and Applications. pp. 21–40. ACM (2005)

28. Levy, P.B.: Call-by-push-value: A subsuming paradigm. In: TLCA. vol. 99, pp.
228–242. Springer (1999)

29. Oliveira, B.C., Moors, A., Odersky, M.: Type classes as objects and implicits. In:
Proceedings of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications. pp. 341–360. OOPSLA ’10, ACM, New
York, NY, USA (2010)

30. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for gadts. In: Proceedings of the Eleventh ACM SIGPLAN
International Conference on Functional Programming. pp. 50–61. ICFP ’06, ACM,
New York, NY, USA (2006)

31. Pierce, B.C.: Types and Programming Languages. Massachusetts Institute of Tech-
nology (2002)

32. Rendel, T., Trieflinger, J., Ostermann, K.: Automatic refunctionalization to a lan-
guage with copattern matching: With applications to the expression problem. In:
Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming. pp. 269–279. ICFP 2015, ACM, New York, NY, USA (2015)

33. Reynolds, J.C.: Definitional interpreters for higher-order programming languages.
In: Proceedings of the ACM annual conference. pp. 717–740. ACM (1972)

34. Reynolds, J.C.: User-defined types and procedural data structures as complemen-
tary approaches to data abstraction. In: Schuman, S. (ed.) New Directions in
Algorithmic Languages 1975. pp. 157–168. IFIP Working Group 2.1 on Algol, IN-
RIA, Rocquencourt, France (1975)

35. Schrijvers, T., Peyton Jones, S., Sulzmann, M., Vytiniotis, D.: Complete and de-
cidable type inference for gadts. In: Proceedings of the 14th ACM SIGPLAN In-
ternational Conference on Functional Programming. pp. 341–352. ICFP ’09, ACM,
New York, NY, USA (2009)

36. Setzer, A., Abel, A., Pientka, B., Thibodeau, D.: Unnesting of copatterns. In:
Dowek, G. (ed.) Proceedings of the Joint Conference on Rewriting Techniques and
Applications and Typed Lambda Calculi and Applications. pp. 31–45. Springer
LNCS 8560 (2014)

37. Thibodeau, D., Cave, A., Pientka, B.: Indexed codata types. In: Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming.
pp. 351–363. ICFP 2016, ACM, New York, NY, USA (2016)

38. Wadler, P.: The expression problem (Nov 1998), note to Java Genericity mailing
list

39. Wadler, P.: Call-by-value is dual to call-by-name. In: Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Programming. pp. 189–
201. ICFP ’03, ACM, New York, NY, USA (2003)

40. Wright, A., Felleisen, M.: A syntactic approach to type soundness. Inf. Comput.
115(1), 38–94 (Nov 1994)

41. Xi, H.X., Chiyan, C., Chen, G.: Guarded recursive datatype constructors. In:
Proceedings of the Symposium on Principles of Programming Languages. pp. 224–
235. ACM (2003)

