Automatic Refunctionalization
to a Language with Copattern Matching

With Applications to the Expression Problem

Tillmann Rendel

Julia Trieflinger

Klaus Ostermann

University of Tiibingen, Germany

Abstract

Defunctionalization and refunctionalization establish a correspon-
dence between first-class functions and pattern matching, but the
correspondence is not symmetric: Not all uses of pattern match-
ing can be automatically refunctionalized to uses of higher-order
functions. To remedy this asymmetry, we generalize from first-class
functions to arbitrary codata. This leads us to full defunctionaliza-
tion and refunctionalization between a codata language based on
copattern matching and a data language based on pattern matching.

We observe how programs can be written as matrices so that
they are modularly extensible in one dimension but not the other.
In this representation, defunctionalization and refunctionalization
correspond to matrix transposition which effectively changes the
dimension of extensibility a program supports. This suggests appli-
cations to the expression problem.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords Defunctionalization, Refunctionalization, Codata, Co-
pattern Matching, Uroboro, Expression Problem

1. Introduction

Defunctionalization transforms programs with higher-order func-
tions into first-order programs with pattern matching (Reynolds
1972} |Danvy and Nielsen|2001). Specifically, each function type
is replaced by an algebraic data type with one variant for each lo-
cation in the program where a function of that type is created. The
components of each variant represent the values of the free vari-
ables in the function body. Application of a function of that type is
replaced by a call to an apply function, which dispatches by pattern
matching on the algebraic data type. For instance, the program

multny=yx*n
addny=y+n

both (f, (a, b)) = (f a,f b)
example (n,z) = both (mult n, both (add n, z))

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ICFP’15, August 31 — September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08...
http://dx.doi.org/10.1145/2784731.2784763

looks as follows after defunctionalization:

data IntTolnt = Mult Int | Add Int
apply (Mult n,y) =y x n
apply (Add n, y) =y +n

both (f, (a, b)) = (apply (£, a), apply (f, b))
example (n,z) = both (Mult n, both (Add n, z))

Refunctionalization is the left-inverse of defunctionalization
(Danvy and Millikin|2009). It works on programs that are in the
image of defunctionalization, that is, there must only be one func-
tion that pattern-matches on the algebraic data type. In that case, we
can replace calls to apply by function application and constructor
applications by abstractions based on the apply function and then
remove the algebraic data type and the apply function. Hence we
are back at the original program.

Unfortunately, refunctionalization no longer works when more
than one function pattern-matches on the algebraic data type. For
instance, in the defunctionalized version of the program, we can
find out whether a function from Int to Int is the addition function:

isAdd (Add _) = True
isAdd (Mult _) = False

This program can no longer be refunctionalized, because there is
no way to analyze a function beyond applying it to a value.

The goal of this paper is to remedy this asymmetry between de-
functionalization and refunctionalization. Our main insight is that
symmetry can be restored by generalizing first-class functions to
codata, that is, objects defined by multiple observations (whereas
functions are objects defined by just one observation, namely func-
tion application). The contributions of this paper are as follows:

e We present Uroboro, a language with pattern and copattern
matching (following Abel et al.[2013)), and the defunctionaliza-
tion and refunctionalization between its data and codata frag-
ments (Section 2).

e We formalize the data and codata fragments and show that
the total and inverse defunctionalization and refunctionalization

preserve typing and behavior (Section 3).

e We observe that the two transformations can be considered a
form of matrix transposition (Section 4J.

e We relate to the expression problem (Wadler]|1998; [Reynolds
1975; |Cook|[1990) by showing that the transformations switch
the dimension of extensibility of the program.

[Section 3] contains an extension of [Reynolds’s| (1972) original ex-
ample to demonstrate the utility of defunctionalization and unre-
stricted refunctionalization. We discuss our results and their rela-
tion to previous work in[Section 6]and conclude in[Section 71

data Nat where
zero() : Nat
succ(Nat) : Nat

function sub(Nat, Nat) : Nat where
sub(zero(), k) = zero()
sub(n,zero()) = n
sub(succ(n), succ(k)) = sub(n, k)

codata List where
List.index(Nat) : Nat

function nil() : List where
nil().index(n) = error()

function cons(Nat, List) : List where
cons(head, tail).index(zero()) = head
cons(head, tail).index(succ(n)) = tail.index(n)

Figure 1. Natural numbers and truncated subtraction.

2. Symmetric Data and Codata in Uroboro

We introduce the language Uroboro with its symmetric support for
defunctionalization and refunctionalization and their connection to
the expression problem with a series of small examples.

2.1 Natural Numbers as Data Type

Uroboro supports the definition of algebraic data types and the im-
plementation of first-order functions with pattern matching. For ex-
ample, shows how to define the algebraic data types of
natural numbers and a function that takes two numbers. The data
type definition for Nat declares the signatures of the two construc-
tors zero (without arguments) and succ (with one argument written
in parentheses that is itself of type Nat). After the colon, all con-
structors of a data type have to use the corresponding data type as
return type, in this case, Nat.

Semantically, calling constructors is the only way to create a
value of the data type. This means that consumers of a data type can
be defined by pattern matching on the constructors. If a consumer
handles all constructors, it is sure to support all values of the data
type. For example, the function sub is defined by pattern matching
on natural numbers. After the function keyword, we first give the
signature of sub. The function takes two arguments of type Nat
and returns Nat. The implementation of sub is given by pattern
matching, using the constructor names zero and succ declared with
the data type above. The equations deal with all the different ways
the arguments could have been created by calling the constructors.
The first equation says that subtracting from O gives 0 (because of
truncated subtraction), the second equation says that subtracting 0
doesn’t change a number, and the third equation recurses in the case
that both arguments to sub are greater than one.

This example is interesting because sub uses some features of
pattern matching that are not obvious to refunctionalize: It pattern
matches on both function arguments and it uses catch-all patterns
instead of enumerating all constructors. We will come back to these
aspects in[Section 3.2

We chose the syntax for constructor and function signatures to
mimic the syntax of constructor and function calls to highlight the
fact that in Uroboro, functions and constructors are second-class
entities that can only be used in calls, but cannot form expressions
on their own. Consequently, Uroboro does not support higher-order
functions directly. Instead, higher-order functions are supported by
encoding them as codata types with a singly apply destructor.

2.2 Lists as Codata Type

Uroboro supports the definition of codata types and the implemen-
tation of first-order functions with copattern matching. For exam-
ple, a list of natural numbers can be represented as a partial func-
tion from indices to the list element at that index. With first-class
functions, we could implement this idea by defining a type syn-
onym List = Nat — Nat. In Uroboro, we define the codata type
in[Figure 2)instead. The codata type definition for List declares the
signatures of the destructor index (with one argument of type Nat).
All destructors of a codata type have to use the corresponding co-
data type as receiver type before the dot, in this case, List.

270

Figure 2. Lists of natural numbers represented as codata type.

—
=

codata type
copattern-matching function

destructor

data type
constructor
pattern-matching function

—
=

—
=

Figure 3. How defunctionalization (read left to right) and refunc-
tionalization (read right to left) change the entities in a program.

Semantically, calling destructors is the only way to consume a
value of the codata type. This means that creators of a codata type
can be defined by copattern matching on the destructors. If a creator
supports all destructors, it is sure to provide enough information for
all consumers of the codata type. For example, the functions nil and
cons are implemented by copattern matching, using the destructor
name index declared with the codata type above. The equations
deal with all the different ways the result could be consumed by
calling the destructor. The equation for nil says that indexing into
an empty list is an error. The first equation of cons says that calling
index with O returns the head of the list. And the second equation
delegates a call to index with a higher number to the tail of the list.

Again, the syntax for destructor signatures mimics the syntax
for destructor calls. We choose the syntax with the dot after the
receiver (as well as the word receiver itself) to resemble the usual
presentation of method calls or record accesses. However, note
that codata types differ from both object types and record types
as they are found in most languages. Unlike usual record types, the
components of codata types are evaluated only when a destructor is
called. Unlike object types, codata types don’t support subtyping,
inheritance or implicit self recursion.

2.3 Defunctionalizing Lists

A problem with the implementation of lists in [Figure 2|is that it is
not immediately apparent how the lists are stored on the heap. We
can make the in-memory structure of a codata type more apparent
by defunctionalizing'|it to a data type. With defunctionalization, all
functions that copattern match on the original codata type become
constructors of a new data type, and all destructors of the original
codata type become functions that pattern match on the new data

type (see|Figure 3| reading left to right).

For e shows the result of defunctionalizing
the list representation from The functions nil and cons
become constructors without changing their signature. The destruc-
tor index becomes a function, with the receiver moved to the first
argument position. The equations are rewritten accordingly and as-
sociated to the new function.

The data representation of lists makes it easier to see that the
lists are stored as single-linked lists on the heap, and that indexing
into a list takes linear time. Since defunctionalization preserves the
operational behavior of programs, these insights into the behavior
of lists carry over to the codata representation. Carrying over such

!'We keep the name defunctionalization although technically we do not have
higher-order functions anymore. |[Pottier and Gauthier| (2006) proposed the
more general term concretization for translations of introduction forms into
injections and elimination forms into case analysis.

data List where
nil() : List
cons(Nat, List) : List

function index(List, Nat) : Nat where
index(nil(), n) = error()
index(cons(head, tail), zero()) = head
index(cons(head, tail), succ(n)) = index(tail, n)

(a) Lists of natural numbers, represented as data type.

function null(List) : Bool where
null(nil()) = true()
null(cons(head, tail)) = false()

(b) Detecting empty lists, modular in the data representation of lists.

Figure 4. Data representation of lists.

insights was the original goal of defunctionalization in|Reynolds’s
(1972) work on definitional interpreters: To understand a higher-
order program (the metacircular interpreter) by studying an oper-
ationally equivalent program (the defunctionalized interpreter). In
fact, the environment representations in Reynold’s interpreters are
very similar to the representations of lists in this paper.

It turns out that the data representation of lists make it also
easy to add additional consumers of lists, for example, a function
that checks whether a list is empty. Since additional consumers
are separate functions, they can be added in a modular way in the
sense that adding them doesn’t require to change any old code, or to
intersperse new code with old code. In a practical implementation,
they could live in separate files. In this paper, they can live in

separate figures, in this example [Figure 4b]

2.4 Refunctionalizing Lists

We can undo the defunctionalization by refunctionalizing the pro-
gram in back to the program in With refunc-
tionalization, all functions that pattern match on the original data
type become destructors of a new codata type, and all constructors
of the original data type become functions that copattern match on
the new codata type (see[Figure 3] reading right to left).

Defunctionalization and refunctionalization are both whole-
program transformation, because they require to transform all func-
tions that copattern match respectively pattern match on a type, not
just the functions in any particular module or part of a program.
For example, if we want to support the null operation on the co-
data representation of lists, we have to refunctionalize the code in
Figures [fa] and [4b] together. The result is shown in

Since we now refunctionalize a data type wich two functions
pattern match on, we get a codata type with two destructors. This
would not be supported by the usual refunctionalization to a pro-
gram with higher-order functions. In Uroboro, however, the support
for data types and for codata types is more balanced which leads to
more symmetric defunctionalization and refunctionalization.

2.5 Modular Extensibility

In Uroboro, like in many languages, it is more modular to add
functions than to add constructors or destructors. Functions can be
added in a separate part of the program, without changing existing
code. But to add constructors or destructors, one has to change the
existing data respectively codata type, as well as all existing func-
tions that pattern respectively copattern match on that type. Since
defunctionalization and refunctionalization change which aspects
of a program are encoded as functions, they also change which di-
mensions of extensibility are supported in a modular way.

271

codata List where
List.index(Nat) : Nat
List.null() : Bool

function nil() : List where
nil().index(n) = error()
nil().null() = true()

function cons(Nat, List) : List where
cons(head, tail).index(zero()) = head
cons(head, tail).index(succ(n)) = tail.index(n)
cons(head, tail).null() = false()

(a) Detecting empty lists, scattered in the codata representation of lists.

function repeat(Nat) : List where
repeat(head).index(n) = head
repeat(head).null() = false()

(b) Creating infinite lists, modular in the codata representation of lists.

Figure 5. Codata representation of lists.

For example, with the codata representation of lists with null
in the three lines of code from the null extension in
are scattered to three different locations: The signature
of null moves to the declaration of the codata type, the equation
for empty lists moves to the definition of the nil function, and the
equation for non-empty lists move to the definition of the cons
function. This scattering shows how the dimension of extensibility
“add consumers” is better supported in the data representation than
in the codata representation.

Conversely, the dimension of extensibility “add creators” is bet-
ter supported in the codata representation than in the data represen-
tation, for example, a function that creates a list which infinitely
repeats the same element. Since additional creators are separate
functions, they can be added modularly without changing any old
code or interspersing new code with old code. Again, in a practical
implementation, they could live in separate files as here they can
live in separate figures, in this example [Figure 5b)

We could defunctionalize the code in Figures[Saland[5b]to study
how the same extension looks like in the data representation of lists.
The three lines of code in would be scattered to three
different locations the defunctionalized program: The signature of
repeat would move to the data type declaration as additional con-
structor, and the equations would move to the index and null func-
tions, respectively. This scattering shows how codata representation
supports the dimension of extensibility “add creators™ better.

This trade-off between two dimensions of extensibility relates
to|Wadler’s| (1998) expression problem. Traditionally, it is phrased
as a trade-off between a functional and an object-oriented decom-
position. In the light of the present work, we would rather phrase it
as a trade-off between a data-oriented and codata-oriented decom-
position, with defunctionalization and refunctionalization as trans-
formations between the two decompositions.

3. Formalization

We formally define the two language fragments that are related
by defunctionalization and refunctionalization: One language with
data types and pattern matching, the other with codata types and co-
pattern matching. These languages are simply-typed and enjoy type
soundness, proven via the usual progress and preservation theo-
rems. The formalization of these languages allows us to clearly de-
fine defunctionalization and refunctionalization and meaningfully
talk about the property of these transformations. We show that they
preserve typing and behavior and are inverse to each other.

o,7 = data type names def ::=data 7 where sig” def ::= codata 7 where sig”
con = constructor names | function fun(o,7*):7 where eqn™ | function fun(r™):7 where eqn*
des = destructor names sig = con(T*): T sig n=o.des(t): T
fun = function names eqn ::= fun(con(z*),y*) =t eqn = fun(z*).des(y*) =t
x,y = variable names st u=a | fun(s,t*) | con(t*) syt n=x | fun(t™) | s.des(t*)
prg = def” u, v = con(v™) u, v = fun(v®)
E u=[|fun(v*,E,t7) | con(v*,E,t") E u=[fun(v*, &, t") | E.des(t™) | v.des(v™, &, t7)

(a) Common syntax.

(b) Syntax of the data fragment.

(c) Syntax of the codata fragment.

Figure 6. Syntactic structure of definitions, terms, values and evaluation contexts.

3.1 The Data Fragment

The two language fragments have some parts in common that are
specified in In both language fragments, a program prg
is a list of top-level definitions def. The fragments differ in what
definitions are allowed in def.

The data fragment supports the definition of data types and of
functions that pattern match on their first argument. Hence a func-
tion is defined by one equation per constructor that could have
been used to create the function’s first argument. The exact syn-
tax of this fragment is given in [Figure 6a| and [Figure 6b] The re-
striction to functions that pattern match on their first argument is
visible throughout the grammar: The syntax of function signatures
fun (o, 7") requires that we declare the type of at least one ar-
gument, the syntax of function calls fun (s, ¢*) requires that we
provide at least one actual argument, and the syntax of equations
fun (con (z%),y*) t hard-codes the fact that we are pattern
matching exactly on the top-level structure of the first argument.
To avoid nondeterminism or ambiguities, we assume that all equa-
tions of a function match against different constructor names.

The definition of evaluation contexts £ and values v make it
clear that the semantics of the data fragment uses call-by-value for
function calls, evaluates arguments left-to-right, and has strict data
constructors. In this regard, the data fragment is entirely standard.

3.2 Restricted Pattern Matching

The data fragment is unusual in that it supports only the very
restricted form of pattern matching on the top-level structure of
the first function argument. More liberal languages with pattern
matching define a grammar of potentially nested patterns and allow
arbitrary patterns for all function arguments in the left-hand sides of
equations. The problem with this more liberal treatment of pattern
matching is that it is not clear what nested pattern matching or
pattern matching on multiple arguments should refunctionalize to.
Fortunately, the restriction to top-level pattern matching on the first
argument does not restrict the expressivity of our language, because
we can desugar nested pattern matching or pattern matching on
multiple arguments by introducing helper functions.

For example, the function sub from pattern matches
on both function arguments. This can be desugared to the formally
defined data fragment by introducing a helper function which per-
forms the second pattern match as shown in and
The basic idea is to bind the value that we want to pattern match
on to a variable (here m) and then call the helper function (here
aux) with that variable as first argument. The helper function can
then perform the pattern match. The right-hand sides of the original
equations are copied to the right-hand sides of the helper function.
In this case, the original function was recursive, so the desugared
function and the helper function will be mutually recursive.

Under the name “disentanglement”, this desugaring is per-
formed manually in many works on interderiving semantic arti-
facts (for example, see |Ager et al.|2003). Setzer et al.| (2014) call
it unnesting and show how to extract an unnesting algorithm from

272

function sub(Nat, Nat) : Nat where
sub(zero(),) = zero()
sub(succ(z), zero()) = succ(z)
sub(succ(z), succ(y)) = succ(sub(z, y))

(a) Avoiding the catch-all pattern z in sub’s second equation in[Figure 1]

function sub(Nat, Nat) : Nat where
sub(zero(), z) = zero()
sub(succ(z), m) = aux(m, x)
function aux(Nat, Nat) : Nat where
aux(zero(), z) = succ(z)
aux(succ(y), z) = sub(z, y)
(b) Avoiding to match on the second argument of sub in

codata Nat where
Nat.sub(Nat) : Nat
Nat.aux(Nat) : Nat

) : Nat where

= zero()

= succ(z)

function succ(Nat) : Nat where
succ(z).sub(m) = m.aux(z)
succ(y).aux(z) = z.sub(y)

(c) Refunctionalized version of sub in

function zero
zero().sub(z
zero().aux(z

~ — N —

Figure 7. Subtraction in the data and codata fragments.

a coverage checker for their dependently-typed language with pat-
tern matching and copattern matching. A similar transformation
is performed when a compiler transforms a pattern match into a
decision tree.

3.3 The Codata Fragment

The codata fragment is in many ways dual to the data fragment.
It supports the definition of codata types and of functions that
copattern match on the function result. Hence a function is defined
by one equation per destructor that could be used to destruct the
function’s result. The exact syntax of this fragment is given in
[Figure 6aland [Figure 6¢] As with the data fragment, we hard-code
the restriction to function definition by copattern matching into the
syntax of equations, and we assume that all equations of a function
match against different destructor names.

The definition of evaluation contexts £ makes it clear that ex-
actly like with the data fragment, the semantics of the codata frag-
ment uses call-by-value for function calls and evaluates arguments
left-to-right. Destructor calls are also evaluated according to the
call-by-value strategy. In this regard, the codata fragment doesn’t
differ from the data fragment. This might come as a surprise:

—

=2z
fun(s, ti, ..., tn) = s'.des(t1, ..., ;) if fun = des,s = s, 4 = t{,...,and t, = t,,
con(tr, ..., ty) = fun(ty, ..., t;) if con = fun,t; = t{, ...,and t, = t,
(a) Rules for the relation t = t’ between defunctionalized and refunctionalized terms.
(z) ==) =g
(fun(s, t17 [EXS) tn)>r = <S>r'<fun>r(<t1>r7 [EES) <tn>r) <S.d€8(t1, (XX} tﬂ))j = <d68>j(<8>dé <t1>d7 é(tT?)d)
<CO’n(t1, ceey tn)>r = <con>r(<t1>ra tey <tn>r) <fun(t17 ceey tn)) = <fun> (<t1> PREES) <t">)
(b) Refunctionalisation (¢)" of terms. (c) Defunctionalization ()9 of terms.
Figure 8. Defunctionalization and refunctionalization of terms.
“fun (o, 71, ..., Tn)” € prg <= “o.des’(T1,...,7)” € prg’ if fun = des’ and prg = prg’
“con(Ti,...,Tn)” € prg <= “fun’(r1,...,7a)” € prg’ if con = fun' and prg = prg’
“Pun(con (T, ooy Tn), Y1y s Y) = 7 € prg <= “fun’(z1, ..., Tn).des’ (y1, ..., ys) = t'” € prg’

if fun = des’, con = fun/,t = t' and prg = prg’

(a) Intended consequences of the relation prg = prg’ between defunctionalized and refunctionalized programs.

(prg)" = { codata o where

{o.(fun) (T1,....Tn) : T
| “fun(o, 71, ...,Tn) : 7" € prg}

| “datac..” € prg}

U { function (con)'(r1, ..., 7) where

{ {con) (1, .oy). (fun) (Y1, .., yi) = ()
| “fun(con(z1, ..., Tn), Y1, ..., ys) =t~ € prg}

| “con(T1,...,mn) : 7" € prg}

(b) Refunctionalisation (prg)" of programs.

(prg)® = { data o where

{ (fun)(r1, ...,) s T
| “fun(ri,....7a) : 77 € prg}

| “codatac...” € prg}

U { function (des)*(, 71, ..., 7o) where

{(des)* (fun)" (@1, ..., 2n), 91, ooy) = (1)
| “fun(xi, ..., xn).des(y1, ..., yp) = " € prg}

| “o.des(T1,..., ™) : T € pry }

(c) Defunctionalization (prg)9 of programs.

Figure 9. Defunctionalization and refunctionalization of programs.

Shouldn’t the codata fragment use some form of call-by-name eval-
uation to support infinite values? Indeed, there is support for infinite
values, hidden in the definition of values v. In the codata fragment,
function calls are values. This means that function calls are not per-
formed until a destructor is called on the function’s result.

3.4 Defunctionalization and Refunctionalization

To specify defunctionalization and refunctionalization, we can now
define a one-to-one relationship between programs in the data and
in the codata fragments. Both directions of this relationship can be
implemented as transformations, that is, we can mechanically de-
functionalize a program in the codata fragment to the related pro-
gram in the data fragment; and we can mechanically refunctionalize
a program in the data fragment to the corresponding program in the
codata fragment. Since the relation is one-to-one, defunctionaliza-
tion and refunctionalization are inverse to each other.

We assume that the transformations do not change variable
names or type names, and that one-to-one relations fun = des and
con = fun are set up to map function and constructor names in the
data fragment to destructor and function names in the codata frag-
ment, respectively. In all examples, we simply use the same names
for related entities in the two fragments. In this formalization, we
still make the potential renaming explicit to clarify the difference
between function and constructor names which is not readily ap-
parent from their uses in function respectively constructor calls.

We first define which terms ¢ in the data language are related to
which terms ¢’ in the codata language, written ¢ = t'. The relation
= on terms is defined inductively on the syntax of terms by the

rules in The rules specify how function application in

273

the data fragment relates to destructor application in the codata
fragment, and how constructor application in the data fragment
relates to function application in the data fragment. This is the same
relationship as informally introduced in[Figure 3]

Reading the rules for the = relation on terms left-to-right, we
can extract the recursive transformation from data terms to codata
terms in And reading the rules right-to-left, we can
extract the recursive transformation from codata terms to data terms
in By construction, these transformations are inverse to
each other. We also observe that = relates data values with codata
values. This allows us to lift = as well as the transformations (-)*
and (-)" to evaluation contexts by pointwise application.

We cannot specify the relation = on programs in such a syntac-
tic way because defunctionalization and refunctionalization operate
on whole programs. In particular, they collect all function defini-
tions and put them in a single data respectively codata type. We
therefore specify the relation = up to reordering of top-level defi-
nitions in terms of the containment of equations and function, con-
structor and destructor signatures in programs.

This specification is shown in It describes how all
parts of one program show up in the related program, just at dif-
ferent places. The first two lines describe how function, constructor
and destructor signatures relate in the two fragments. Necessarily,
these relationships mimic the relationships of function, constructor
and destructor calls from The last line of the specifica-
tion describes that related programs basically have the same equa-
tions, but are written differently.

We can implement transformations between related programs
by loops over the input program. The set comprehensions in

“o.des(T1y...,Tn) T €N
“Pun(Ti, ..., mh) T EX “Ccon(Tiy...,Tn) : 77 € X ke s:o
Pk ti:m Tk ti:m ks tiim
ks ty:mn ks ty:mn ks ty:mn
Ths fun(ty, .. ty) : 7 ks con(ti,....,tn) : T Tks s.des(tiy ..., tn) : T
“con(o1,....,0n): 07 €X “fun(oi,...,on) 07 €3
“Sun(oyTi,y .y Tk) 77 €D “o.des(T1y .., Tk) : 77 € X
Ty 101, ey Ty Oy T 101, ey Ty Oy
“r:77 el YLiTly ey Yk Tk P E 0 T YL Tl ey Yk Tk F E 0 T
I'ksz:7T Y F fun(con(zi, ..., Tn), Y1, - Y) = £ OK SF fun(zi, ..., zn).des(yi, ..., yg) = t ok

(a) Common typing rules.

(b) Additional typing rules for data fragment.

(c) Additional typing rules for codata fragment.

prg bt~ t “fun(con(z, ..., Tn), Y1, ..., Yu) = t” € prg “fun(z1, ..., Tn).des(y1, ..., yn) = t” € prg
prg E[tJ ~ prg b fun(con(ui, ..., Un), U1, ..., Uk) ~ prg b fun(uy, ..., up).des(vi, ..., Ug) ~
Elt'] LT > Wiy eeey T > Uny Y1 > V1 oeey Yk > U] L@ > Uy ey Tn > Uny Y1 > V1 ooy Yk > Vg

(d) Congruence rule.

(e) Contraction rule for data fragment.

(f) Contraction rule for codata fragment.

Figure 10. Static and dynamic semantics.

sub(s(s(2())),

s(2())) ~> aux(s(z(), s(2())) ~ sub(s(z()),

S(S(Z
s(s(2()))-sub(s(2())) ~ s(z())-aux(s(z())) ~

2()) ~ aux(z(), 2()) ~ s(2())

S\Z
s(z())-sub(z()) ~ z().aux(z()) ~ s(z())

Figure 11. Reduction sequences for computing 2 — 1 = 1 using the programs in [Figure 75| (upper sequence) and[7¢c] (lower sequence). The

identifiers succ and zero are abbreviated as s and z.

describe the steps necessary for refunctionalization of
programs: We first loop over all data types in the original program
and transform them to codata types. In the inner loop, for each data
type o, we collect all function signatures from the original program
that have o as first argument and transform them into destructor sig-
natures for the newly created codata type. Then we loop over all
constructor signatures in the original program and transform them
to functions. In the inner loop, for each constructor con, we loop
over all equations in the original program that pattern match on con
and transform them into equations for the newly created function.
Defunctionalization is defined similarly by the set comprehensions
in It is easy to see that these transformations implement
the specification from and that they are inverse of each
other, up to ordering of program elements.

For example, a refunctionalized version of the program in
[Figure 7b]is shown in These two programs are related by
=. Itis interesting to see how the helper function aux introduced in
gets refunctionalized to a helper destructor. In object-
oriented programming, this corresponds to a typical approach of
simulating double dispatch.

3.5 Typing

We now define a static type system for the data and codata frag-
ments to show that defunctionalization and refunctionalization pre-
serve typing. The well-typedness of expressions is defined with re-
spect to a signature 3 which contains all function, constructor and
destructor signatures that occur in a program (but not the equa-
tions), and a context I' which contains type assignments for vari-
ables. The typing rules are formally defined in[Figure T0using rules
for the following judgments: I' s, ¢ : 7 means that expression ¢
has type 7 under signature 3 and context I', and > - eqn ok means
that equation eqn is well-typed under signature 3.

The rules in are common to both language frag-

ments. Note that in the data fragment, functions need to have at

274

least one argument, so n in rule FUN cannot be 0 if the rule is used
to check an expression in the data fragment, but everywhere else
in n or k can be 0. [Figure 10D and [Figure 10¢| list the
typing rules for the data and codata fragments, respectively. Since
the language fragments are both first-order and don’t support local
variable binding, typing is very simple. In particular, all binding
occurrences of variables are in the left-hand sides of equations, and
all bound occurrences are in the right-hand sides of equations, so
the two rules for the X - egn ok judgment are the only rules that
need to manipulate the typing context. A program is well-typed if
all its equations are well-typed.

A program prg is complete with respect to a signature 3
if the equations in the program uniquely cover all combina-
tions of functions and constructors induced by 3. For the data
fragment, this means that for all “con (o1,...,0,) : 07 € X
and “fun (01,71,...,7k) : 77 € 3, there is a unique ¢ so that
“fun (con (T1, ..y Tn)y Y1y -y Yk) t” € prg. And for the co-

data fragment, it means that for all ¢ fun (61,.y0p) 107 € X
and “oy.dst (t1,...,7%) : 77 € 3, there is a unique ¢ so that
“fun(zi, ..., zn).des(y, ..., yx) = t” € pry.

We can apply =, (-)" and (-)¢ to signatures ¥ analogously to
their definition on programs prg. We see that given ¥ = ¥’ and
prg = prg’, the program prg is complete with respect to ¥ if and
only if the program prg’ is complete with respect to X’. We can
use the same typing context I' for related programs in the data and
codata fragments because the names of variables and types remain
unchanged during defunctionalization and refunctionalization. This
allows us to state the following lemmas about the fact that =
preserves typing for terms and equations:

Lemma 1. Given ¥ = ¥/, ¢t = t/, and 7 = 7/, we can derive
I' by ¢t : 7if and only if we can derive I" Fs ¢/ : 7/,

Proof. We prove each direction by induction on the typing deriva-
tion we are given. If it is the rule for variables, we are done, because

the typing context is unchanged. If it is one of the other rules, we
use the induction hypotheses and one of the first two properties in
[Figure 9a]to construct the corresponding derivation. O

Lemma 2. Given ¥ = Y’ and prg = prg’, then all equations
in prg are well-typed if and only if all equations in prg’ are well-
typed.

Proof. For each equation having to show its well-typedness, we
pick the corresponding relation in the transformed program from
which we know that it is already well-typed (by the third property
in [Figure 9a). We observe that the equations construct the same
variables and finish the prove with[Cemma 11 O

3.6 Semantics

As mentioned before the function equations are used for rewriting,
so we perform reduction steps until no rewriting rule can be used
furthermore. In case of our data-language this means constructor
calls and in case of our codata-language this means function calls.

We formally specify the dynamic semantics of the two language
fragments by rules for judgments of the form prg + ¢ ~ ¢'. This
judgment states that given the equations in program prg, the term ¢
reduces to ¢’ in one step. The language fragments share the standard
congruence rule in [Figure 10d} albeit each fragment defines their
own notion of evaluation context £ (in[Figures 6bjand[6c). We need
only one additional reduction rule per language fragment to specify
its semantics, because their equations have restricted shape.

For the data fragment, the rule in specifies how
to execute a function call if the first argument has already been
evaluated to a constructor application. In this case, the function
call is replaced by the right-hand side of the equation for that
particular function-constructor combination, with the free variables
appropriately substituted. And for the codata fragment, the rule
in specifies how to execute a destructor call if the first
argument has already been evaluated to a function application. In
this case, the destructor call is replaced by the right-hand side of the
equation for that particular function-destructor combination, with

the free variables appropriately substituted. For example, [Figure T1]|
shows the reduction sequences that arise from computing 3 — 2

using the definitions of sub from [Figures 7b|or[7¢] respectively.

Lemma 3. Ifin either language fragment, X is the signature of prg,
all equations in prg are well-typed, I' s ¢ : 7, and prg - t ~ ¢’
then ks t' : 7.

Proof. We prove this by induction on the derivation of prg - ¢ ~~
t’. For the congruence rule, we use induction on the evaluation
context £ to construct the typing derivation which is necessary to
use the induction hypothesis. For the other rules, we use the fact
that all equations are well-typed and a standard substitution lemma
(proven by induction on the structure of terms). O

Lemma 4. If in either language fragment, prg is complete with
respect to X, all equations in prg are well-typed, and s ¢ : T,
then either ¢ is v, or there exists ¢’ so that prg = ¢ ~ .

Proof. We prove this by induction on the derivation of I' Fx; ¢ : 7.
The case for variables is impossible because the context is empty.
In the other cases, we apply the induction hypotheses for all sub-
derivations, from left to right, until we find the first subexpression
of ¢ that is reducible. If we find a reducible subexpression, we con-
struct a reduction derivation with the corresponding evaluation con-
text. If all subexpressions of ¢ are values, we find that either ¢ is a
value or ¢ is reducible. In the latter case, since prg is complete with
respect to X, we know that the equation, necessary to construct a
reduction derivation for ¢, is available in prg.

275

We don’t need a lemma for canonical forms, because in each of
the fragments, there is only one form of values. O

—
=

Lemma 5. Given prg = prg’, s s’,and t = t/, then

prg b s ~» tif and only if prg’ F s" ~ t'.

Proof. We prove both directions by induction on the reduction
derivation we are given. For the congruence rule, we use induction
on the evaluation context £ to construct the reduction derivation
necessary to use the induction hypothesis. This uses the similarity
of the evaluation contexts for the two language fragments. For the
other rules, we use the last property from and a lemma
that states how = interacts with substitution (proven by induction
on the structure of terms). O

The previous lemma shows that de- and refunctionalization pre-
serve the operational semantics of terms in the strong sense that
evaluation of related terms proceeds in lockstep. This allows us to
study the operational behavior of a term by studying the operational
behavior after de- or refunctionalizing it. In the case of definitional
interpreters, this use case is particularly important, because study-
ing the operational behavior of an interpreter corresponds to study-
ing the operational behavior of the interpreted language.

Writing ~~* for the reflexive, transitive closure of ~», we can
also state a weaker result about the result of the reduction of
normalizing terms.

Lemma 6. Given prg = prg’, s = s, and v = v, then
prg = s ~* v if and only if prg’ F s’ ~* v'.

Proof. We prove both directions by induction on the length of
the reduction sequence, constructing a corresponding reduction
sequence of equal length using [Cemma 3l for every step. O

With the last lemma it is clear that the transformation of a
program evaluates to the same result and this with the same number
of evaluation steps.

4. Transformations as Matrix Transpositions

We now want to highlight another way to view the two languages
and their relation through de- and refunctionalization, namely as
matrices and matrix transposition, respectively. shows
how we can arrange the two programs from atrices
so that defunctionalization and refunctionalization correspond to
matrix transposition.

If we unify the syntax of function and destructor calls (e.g.,
aux (m, z) vs m.aux (z)) to only use the former variant, and do
the same with declarations (e.g., write sub (Nat, Nat) : Nat for
both sub (Nat, Nat) : Nat and Nat.sub (Nat) : Nat) we can also
show both versions of the program in a single matrix:

\ zero() : Nat succ(Nat) : Nat
sub(Nat,Nat) : Nat zero() aux(m,Xx)
aux(Nat,Nat) : Nat succ(x) sub(x,y)

A row-by-row reading of the matrix corresponds to the program
variant in ?Eure %a whereas a column-by-column reading corre-
sponds to|Figure 12b} This means that both defunctionalization and
refunctionalization can be understood as matrix transpositions.

Adding a new row to the matrix means to extend the program
with a new consumer, which could be done in a modular way in the
data language to not have to scatter code and to avoid the expres-
sion problem. Analogously adding a new column means to extend
the program with a new creater structure which could be done mod-
ularly in the codata language. If someone wants to add both, rows
and columns, this can be achieved by repeatedly transposing the
matrix using defunctionalization and refunctionalization.

data Nat where
function sub(Nat, Nat) : Nat where
function aux(Nat, Nat) : Nat where

zero() :
sub(zero(),
aux(zero(), z) = succ(z)

Nat
z) = zero()

succ(Nat) : Nat
sub(succ(z), m) = aux(m,)
aux(succ(y), z) = sub(z, y)

(a) The program from [Figure 7b|arranged as a matrix.

codata Nat where
function zero() : Nat where

function succ(Nat) : Nat where succ(z)

Nat.sub(Nat
zero() sub(z
.sub(m) = m.aux(z)

) : Nat
) = zero()
)=

Nat.aux(Nat) : Nat
zero().aux(z) = succ(z)
succ(y).aux(z) = z.sub(y)

(b) The program from|Figure 7c|arranged as a matrix.

Figure 12. If we write programs as matrices, defunctionalization and refunctionalization correspond to matrix transposition.

If one organizes the matrix a bit differently, then it is not just
a projection of the programs but one can reconstruct the programs
from the matrix by a row-by-row or column-by-column, respec-
tively, reading. For the data type reading, we can reconstruct the
data declarations by assembling all constructors with the same re-
turn type to a data type declaration. The entries in the first column
give us the signatures of the functions. Similarly, for the codata
reading, we can assemble all destructors with the same first argu-
ment into a codata declaration. The first row gives us the signatures
of the functions. Since we can organize the matrix such that all dec-
larations that belong together are adjacent to each other, one linear
pass through the matrix without book-keeping is sufficient to re-
construct all declarations.

But we cannot yet reconstruct the full function definitions be-
cause the binding positions of the variables are not specified. How-
ever, if we fix the names of variables to be, from left to right, 20,
x1 etc., we can avoid the issue. This works because there is only
one way to write the left hand side of an equation (see[Section 3.1)).
In this version, the matrix for the example looks like this:

| zero() : Nat succ(Nat) : Nat
sub(Nat,Nat) : Nat zero() aux(x1,x0)
aux(Nat,Nat) : Nat succ(x0) sub(x1,x0)

We have implemented a prototype of Uroboro in which the full
program is stored as a matrix as above and in which we use a stan-
dard matrix transposition function to perform defunctionalization
and refunctionalization.

We believe that the idea to represent programs as matrices rather
than as trees is interesting on its own. Furthermore, a matrix-
like depiction of programs is standard in presentations about the
expression problem. We have formalized this graphical metaphor.

5. Case Study

To illustrate the power of defunctionalization with full refunctional-
ization, we follow Reynolds| (1972 Sec. 5) and consider a metacir-
cular interpreter for the untyped lambda calculus, written in a lan-
guage with higher-order functions. We will first present a meta in-
terpreter where closures are represented by closures, then defunc-
tionalize it to a syntactic interpreter, then extend the interpreter with
normalization-by-evaluation, and then refunctionalize it back to the
codata language.

5.1 The Object Language

We focus on the pure untyped lambda calculus, that is, application,
lambda abstraction and variable occurrences, only adding a term
err which leads to an immediate error when executing. We repre-
sent bound variables as de Bruijn indices. These changes will be
useful later in this section, when we add reification of values to
terms in order to achieve normalization by evaluation. In the data

276

codata Exp where
Exp.eval(Env) : Val

function var(Nat) : Exp where
var(name).eval(env) = env.index(name)

function app(Exp, Exp) : Exp where

app(fun, arg).eval(env) =
fun.eval(env).apply (arg.eval(env))

function fun(Exp) : Exp where
fun(body).eval(env) = closure(body, env)

function err() : Exp where
err().eval(env) = error()

codata Val where
Val.apply (Val) : Val

function closure(Exp, Env) : Val where
closure(body, env).apply (arg) = body.eval(cons(arg, env))

function error() : Val where
error().apply(arg) = error()

function interpret(Exp) : Val where
interpret(e) = e.eval(nil())

Figure 13. Meta Interpreter

fragment of Uroboro, we can express this abstract syntax as a data
structure Exp shown in

The data type Exp supports variables (var), lambda expressions
(fun) and application (app). Note that our use of de Bruijn indices
means that we don’t store binding variable occurrences in the fun
nodes. Instead, bound variable occurrences count how many lamb-
das we have to jump over before we find the lambda with the bind-
ing occurrence. For example, the term double = Af Ax.f(fx)
AA1(1 0) is represented as as follows:

fun (fun (app (var (succ(zero())),
app(var(succ(zero())),
var (zero())))))

5.2 Metacircular Interpretation

Using codata types to encode higher-order functions, we can
closely follow Reynolds’s|(1972) metacircular interpreter as shown
in Unlike Reynolds, we also represent Exp as refunc-
tionalized data structure using a codata type because we want to
focus on the codata fragment of Uroboro for the meta interpreter.
Both environments and values are represented by codata types.
Since environments for de Bruijn indices are, apart from the ele-
ment type, identical to lists as defined in[Figure 2} we do not repeat
its definition here and assume that they are defined as in[Section 2]

data Exp where
var(Nat) : Exp
app(Exp, Exp) : Exp
fun(Exp) : Exp
err() : Exp
data Val where
closure(Exp, Env) : Val
error() : Val
function eval(Exp, Env) : Val where
eval(var(z), env) = index(env, x)
eval(app(e, €2), env) =
apply (eval(er, env), eval(ez, env))
eval(fun(body), env) = closure(body, env)
eval(err(), env) = error()
function apply(Val, Val) : Val where
apply (closure(body, env), arg) =
eval(body, cons(arg, env))
apply (error(), arg) = error()
function interpret(Exp) : Val where
interpret(e) = eval(e, nil())

Figure 14. Defunctionalization of the interpreter in Figure @
yields this more syntactic interpreter.

with the following superficial changes: The type is called Env in-
stead of List, and the type of list elements is Val instead of Nat.
The helper function closure creates values. The main entry point
is interpret which calls eval with an initial environment. Since
we don’t provide any built-in operations, we can use the empty
environment here. Finally, the code of eval is distributed among
the functions var, app, fun, and err, similar to a pure embed-
ding(Hudak|1998) of the lambda calculus.

5.3 Defunctionalization to a Syntactic Interpreter

Defunctionalization of the codata types Val, Env and Exp yields
the more syntactic interpreter shown in We only show
the result of defunctionalizing Val and Exp; the defunctionaliza-
tion of Env is as in Figure fa]

A well-known benefit of defunctionalization is that it is usually
easier to understand the memory layout of algebraic data types than
to understand the memory layout of first-class functions. In this
case, the defunctionalization makes it clear that values are stored
as closures, and environments are stored as lists.

Defunctionalization also collects all cases of eval together into
a function that is defined by pattern matching on the syntax of ex-
pressions. This suggests that defunctionalization and refunctional-
ization can describe the relationship between shallow and deep em-
bedding of a language.

5.4 Reification

Another benefit of defunctionalization is that once we have a rep-
resentation of a function (or rather, codata) space as algebraic data
type, we can add more functions that pattern match on values of
that type. In this case, let us add a function reify that takes a value
and returns an expression in normal form which would evaluate to
that value. In other words, let us implement normalization by eval-
uation (Berger and Schwichtenberg||1991)).

For example, if double is the representation of A\f.A\z.f (f x)
from above, then the normal form of double applied to itself is the
representation of Af Az.f (f (f (f z))). Using our reify function,
we can compute this representation as follows:

reify (eval(app(double, double), nil()), zero())

277

data Val where
closure(Exp, Env) : Val
error() : Val

-- step 4:
resVar(Nat) : Val

-- step 7:
resApp(Val, Val) : Val

function apply(Val, Val) : Val where
apply (closure(body, env), arg) =
eval(body, cons(arg, env))
apply (error(), arg) = error()
-- step 6:
apply (resVar (level), arg) =
resApp (resVar (level), arg)
-- step 9:
apply (resApp(vi, v2), v3) =
resApp(resApp(vi, v2), v3)
-- step 1:
function reify (Val, Nat) : Exp where
-- step 2:
reify (error(), level) = err()

-- step 3:
reify (closure(body, env), level) =
fun (reify (eval (body, cons(resVar (succ(level)), env)),
succ(level)))

-- step 5:
reify (resVar (outer), inner) =
var (sub(inner, outer))
-- step 8:
reify (resApp(v1, v2), level) =
app (reify (v1, level), reify (vz, level))

Figure 15. Extending the syntactic interpreter from Figure [T4] to
implement normalization-by-evaluation.

Figure 15| shows all necessary changes to the vanilla syntactic in-
terpreter in|Figure 14} In order to understand how to come up with
this implementation, we go through the necessary changes in an
order they could have been done in.

1. Our goal is to write reify (Val, Nat) : Exp so that it transforms
a value back into a term in normal form. The additional Nat
argument is the de Bruijn level of the first variable to be bound
inside the returned expression. We need this information in
order to compute de Bruijn indices for variables bound outside
but used inside the returned expression.

. The case for error () is easy because we took care to add err ()
to the set of expressions.

. In the case for closure (body, env), we would like to return a
lambda expression with a body in normal form. To normalize
the body, we want to evaluate and then reify the body from
the closure, treating the freshly bound variable as a residual
term that is already in normal form. Assuming a constructor
resVar (Nat) : Val which creates such a residual variable (at a
given de Bruijn level), we can complete the case.

. Now we have to actually add the new resVar constructor for
residual variables.

5. Since we added a constructor for Val, we have to implement
reification for it. A residual variable bound at de Bruijn level
outer and used at de Bruijn level inner is reified to a variable
with de Bruijn index inner — outer. We use sub as a helper
function to subtract natural numbers as necessary for the com-
putation of de Bruijn indices from de Bruijn levels.

. We also have to extend the apply function to deal with the new
resVar constructor for residual variables. Applying a residual
variable to a value creates a residual application, so to imple-
ment it, we have to assume the addition of yet another con-
structor resApp for the algebraic data type of values.

7. Next, we actually add the new resApp constructor.

8. For the new constructor, we have to extend reify again. We reify
a residual application by reifying the operator and operand, and
then constructing an application.

. Finally, we also have to reify apply for the new resApp con-
structor. Luckily, applying a residual application just creates
another residual application, so we don’t have to add any
more constructors, and this completes our implementation of
normalization-by-evaluation.

We learn two lessons from this experiment: On the one hand, it was
possible to extend the defunctionalized form of the interpreter be-
cause we could just add additional functions that pattern match on
the defunctionalized codata space. But on the other hand, we had to
change many parts of the program when we added new construc-
tors to the defunctionalized codata space. Changing already exist-
ing parts of a program is not good from a modularity and maintain-
ability perspective.

We recognize this as an instance of the expression problem:
The two dimensions of extensibility are the addition of functions
that consume values and the addition of kinds of values. In the
defunctionalized form, the former is well-supported, and the latter
is ill-supported in a modular way.

5.5 There and Back Again

At this point, we want to undo the defunctionalization, that is, we
would like to refunctionalize the interpreter back to use codata to
see a different trade off between the two dimensions of extensibil-
ity. In a conventional functional language we would be stuck at this
point, because after the addition of normalization-by-evaluation,
our program is no longer in the image of defunctionalization, be-
cause there is more than one function that pattern matches on Val.

In Uroboro, however, codata is not restricted to a single observa-
tion, hence we can simply add another destructor Val.reify (Nat) :
Exp to the Val codata type, as shown in The com-
ments in this figure also highlight the changes necessary to add
normalization-by-evaluation, with the same step numbers as in

Thinking about the expression problem again, we observe the
the relationship between dimensions of extensibility and support
for modular changes summarized in We see again that
in the defunctionalized form, adding consumers of values is well-
supported but adding ways to constructor values is ill-supported in
a modular way. And conversely, we see that in the refunctionalized
form, adding consumers is ill-supported and adding ways to con-
struct is well-supported in a modular way. This is a typical situation
with respect to the expression problem: Two complementary ways
to encode information support different dimensions of extensibil-
ity. This case study confirms the authors’ intuition that defunction-
alization and refunctionalization could be a theoretical foundation
for thinking about the expression problem, as well as for describing
the various solutions for the expression problem that are based on
carefully combining data and codata types.

278

codata Val where
Val.apply (Val) : Val
-- step 1:
Val.reify (Nat) : Exp
function closure(Exp, Env) : Val where
closure(body, env).apply(arg) =
body.eval(cons(arg, env))
-- step 3:
closure(body, env).reify (level) =
fun(body.eval (cons(resVar (succ(level)), env))
.reify (succ(level)))
--step 4,5, 6:
function resVar(Nat) : Val where
resVar (outer).reify (inner) =
var (sub(inner, outer))
resVar (level).apply (arg) =
resApp (resVar (level), arg)
--step 7,8, 9:
function resApp(Val, Val) : Val where
resApp(v1, v2).reify (level) =
app (v1.reify (level), va.reify (level))
resApp(v1, v2).apply (vs) =
resApp(resApp(v1, v2), v3)
function error() : Val where
error().apply (arg) = error()
-- step 2:
error().reify (level) = err()

Figure 16. Refunctionalization of the interpreter in Figure
yields this more metacircular implementation of normalization by
evaluation.

Step Dimension Defunct. Refunct.
1 add consumer modular nonmodular
2 add consumer modular nonmodular
3 add consumer modular nonmodular
4 add constructor nonmodular modular
5 add constructor nonmodular modular
6 add helper modular modular
7 add constructor nonmodular modular
8 add constructor nonmodular modular
9 add constructor nonmodular modular
10 add constructor nonmodular modular

Figure 17. Modular support for different changes in the defunc-
tionalized and refunctionalized variants of the interpreter.

6. Related and Future Work

Danvy and his collaborators have developed a long-standing pro-
gram to interrelate semantic artifacts (such as big-step semantics,
small-step semantics, abstract machines) through systematic trans-
formations, such as CPS transformation, closure conversion, refo-
cusing (for example, |Danvy and Millikin|2009; |Ager et al.|[2003;
Danvy and Nielsen|2001). Defunctionalization and refunctional-
ization are two key components in this program. We believe that a
better correspondence between these two transformations can have
a positive influence on the whole program.

Cook discussed the relation between object-oriented program-
ming and abstract data types (Cook:2009). We believe that our work
can be seen as a formalization of the relation as described by Cook.

While our language does not support abstract data types through a
type system, a data type definition together with all functions that
operate on it can be seen as an abstract data type, and program-
mers could, by disciplined usage, ensure that representation inde-
pendence holds. Also, the variant of objects described by Cook fits
well to our support of codata and copattern matching. Ignoring the
missing enforcement of representation independence, defunction-
alization and refunctionalization as described in this paper hence
correspond to the relation between ADTs and objects as described
in Sec. 4.2 and 4.3 of Cook’s paper.

Janzen and de Volder| (2004) discuss a programming system in
which one can both view and edit a program in two different de-
compositions, namely a decomposition into object-oriented classes
and a decomposition into “modules”, which collect all implemen-
tations of a method into one module. Our approach can be seen as
a semantic justification for their approach. Integrating the transfor-
mations proposed in this paper into an IDE to switch between these
two “views” and edit the program in the one that fits best to the task
at hand would also be a straightforward application of this paper.

Lammel and Rypacekl (2008) also investigate the duality be-
tween data and codata and their relation to the expression problem.
They focus on semantic methods and a theoretical description of the
duality, using category theory, whereas we focus on syntactic meth-
ods and the design of a practical language, using basic program-
ming language methodology. It would be interesting to understand
the exact relationship between their results and our transformations.

Among others, Carette et al.| (2009) propose to implement
domain-specific languages (EDSLs) by a form of Church encoding.
This requires to specify every semantics of an EDSL in a composi-
tional way. It appears as if disentanglement followed
by refunctionalization could be used to automatically transform a
non-compositional function on an initial embedding (data types and
pattern matching) to a compositional semantics that is suitable for
use with the final embedding. As expected, the compositional se-
mantics would include some extra information that is only needed
to achieve compositionality, in the form of additional destructors.

Our use of copattern matching derives from|Abel et al.’s| (2013)
work. To achieve symmetry with our first-order, simply-typed data
fragment, we leave out polymorphic and dependent types, and
merge Abel’s application copattern and destructor copatterns into
a form of destructor copatterns that also support arguments. In our
future work, we want to consider more powerful type systems for
Uroboro. As a first step, we want to consider polymorphism. It is
known that defunctionalization of polymorphic functions requires
generalized algebraic data types (GADTs) (Pottier and Gauthier
2006). We expect that for refunctionalization of polymorphic func-
tions we need to invent something like generalized codata types.

7. Conclusions

We have shown that defunctionalization and refunctionalization
can be made symmetric by generalizing higher order functions to
codata. We believe that this result is significant both from a the-
oretical and from a pragmatic point of view. It provides a strong
justification for programming languages with codata and copattern
matching and may as such inform the design of new functional pro-
gramming languages. The transformations can also be used as pro-
gramming techniques, either in the design of automated tools (or
even IDEs) or simply as another tool in the programmer’s toolbox
of powerful program transformations. We have seen that the two
languages we defined also shed new light on the expression prob-
lem, since they correspond to the two forms of extensibility that
are in the focus of the expression problem. Finally, the organiza-
tion of programs as matrices and the transformations as transposi-

279

tions of these matrices suggests a novel view of programs as two-
dimensional (rather than tree-structured) entities, which we believe

to be interesting to explore in future work.

Acknowledgments

We thank the anonymous reviewers for their helpful comments.
Paolo G. Giarrusso pointed out the possible connection between
disentangling and automatic compositionalization. Olivier Danvy
provided feedback that helped us in the preparation of the final
version. Tobias Weber implemented a typechecker for Uroboro
which we used to type check the code examples in the figures.

References

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming
infinite structures by observations. In Proceedings of the Symposium on
Principles of Programming Languages, pages 27-38. ACM, 2013.

M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional corre-
spondence between evaluators and abstract machines. In Proceedings of
the Conference on Principles and Practice of Declarative Programming,
pages 8-19. ACM, 2003.

U. B. Berger and H. Schwichtenberg. An inverse of the evaluation func-
tional for typed A—calculus. In Proceedings of the Symposium on Logic
in Computer Science, pages 203-211. IEEE Computer Society, 1991.

J. Carette, O. Kiselyov, and C. Shan. Finally tagless, partially evaluated:
Tagless staged interpreters for simpler typed languages. Journal of
Functional Programming, 19(5):509-543, Sept. 2009.

W. R. Cook. Object-oriented programming versus abstract data types.
In Proceedings of the REX Workshop / School on the Foundations of
Object-Oriented Languages, pages 151-178. Springer-Verlag, 1990.

W. R. Cook. On understanding data abstraction, revisited. In Proceedings of
the Conference on Object-Oriented Programming, Systems, Languages
and Applications, pages 557-572. ACM, 2009.

O. Danvy and K. Millikin. Refunctionalization at work. Science of Com-
puter Programming, 74(8):534-549, 2009.

O. Danvy and L. R. Nielsen. Defunctionalization at work. In Proceedings of
the Conference on Principles and Practice of Declarative Programming,
pages 162—174, 2001.

P. Hudak. Modular domain specific languages and tools. In Proceedings
of the Conference on Software Reuse, pages 134—142. IEEE Computer
Society, June 1998.

D. Janzen and K. de Volder. Programming with crosscutting effective
views. In Proceedings of the European Conference on Object-Oriented
Programming, pages 195-218. Springer LNCS 3086, 2004.

R. Lammel and O. Rypacek. The Expression Lemma. In Proceedings of the
Conference on Mathematics of Program Construction. Springer LNCS
5133, July 2008.

F. Pottier and N. Gauthier. Polymorphic typed defunctionalization and
concretization. Higher-Order and Symbolic Computation, 19(1):125—
162, Mar. 2006.

J. C. Reynolds. Definitional interpreters for higher-order programming
languages. In Proceedings of the ACM annual conference, pages 717—
740. ACM, 1972.

J. C. Reynolds. User-defined types and procedural data structures as com-
plementary approaches to data abstraction. In New Directions in Algo-
rithmic Languages 1975, pages 157-168. IFIP Working Group 2.1 on
Algol, INRIA, 1975.

A. Setzer, A. Abel, B. Pientka, and D. Thibodeau. Unnesting of copatterns.
In Proceedings of the Joint Conference on Rewriting Techniques and
Applications and Typed Lambda Calculi and Applications, pages 31-45.
Springer LNCS 8560, 2014.

P. Wadler. The expression problem. Note to Java Genericity mailing list,
Nov. 1998.

	Introduction
	Symmetric Data and Codata in Uroboro
	Natural Numbers as Data Type
	Lists as Codata Type
	Defunctionalizing Lists
	Refunctionalizing Lists
	Modular Extensibility

	Formalization
	The Data Fragment
	Restricted Pattern Matching
	The Codata Fragment
	Defunctionalization and Refunctionalization
	Typing
	Semantics

	Transformations as Matrix Transpositions
	Case Study
	The Object Language
	Metacircular Interpretation
	Defunctionalization to a Syntactic Interpreter
	Reification
	There and Back Again

	Related and Future Work
	Conclusions

