=\ Universitat
Marburg

Philipps

Academic Writing

Paolo Giarrusso
(mostly based on material by Christian Kastner)

Basic premise of writing: information overload

» Readers don’t have time for you
» You can’t take readers attention or effort for granted

No point-last text
English vs. other traditions (German, Italian, East Asian?...)

» Hence, simplify the reader’s job.

Reading strategy

Papers:

» have abstract, introduction and conclusions
» those summarize message

» = read them to decide whether to read rest

Book chapters:
» a good book should follow the same idea

» for Code Complete, see for instance Key Points at the
end.

Why to write a paper

» Communicate new findings
publication = ultimate result of scientific research
research is never finished until it's published

» To let the community know about your work
Recognition
Contacts, fruitful collaborations

» Get feedback from peers

external, independent, frank (anonymous]

Why to write a survey papers

» Summarize existing findings

» Prepare for new research by summarizing the state of
the art

» Get feedback from peers
When practicing:

» Test understanding

» Practice writing

Why to learn paper writing

All of the above, and:
» understand writing from others and learn to judge it

» learn to argue in a professional way

Encode a complex web of ideas
... as a linear stream of text.

HOW?

paper organization != research process

Criteria for research

» Significance

Motivate why the research is important or useful. Explain what
problem it addresses

» Clarity

Organize the paper well and write clearly. Make sure you
support your claims

» Novelty

Extend the frontier of knowledge. Explicitly relate your research
to previous work

» Correctness

Critically evaluate and support your claims with proofs, an
implementation, examples, or experiments.

Source: William Cook: Academic Writing

Steps to writing a (term) paper

» “Ask a question worth answering” (significance).

» “Find an answer that you can support with good
reasons” (correctness).

» “Find reliable evidence to support your
reasons” (correctness).

» “Draft a report that makes a good case for your
answer” (correctness).

» “Revise that draft until readers will think you met the
previous goals” (clarity).

By Turabian (2007).

10

Anatomy of a paper

Title

Abstract

Introduction

(Background / Related Work]
(Problem Statement)
Body

Evaluation

Discussion

Related Work

Conclusion + Future Work
References

vV VvV VvV VvV VvV VvV VvV VvV VvV Vv VY

Abstract

4
4
4
4
4

Very brief summary of the paper

Why is this work important, what was the motivation?
Main contents, main results

What is the contribution?

Typically one of the last things to write

= Is this paper relevant for the reader (and
conference)?

Introduction

» What is the general problem? Why is it important?

» What is the specific problem? Why should the reader
care?

How is it different from prior work?

What was the motivation for this work?

What are the objectives/contributions? How is it new?
What are the main results?

What is the general approach/outline?

vV VvV VvV Vv VvV v

Keep it short (approx. 1 column)

Background (if necessary)

» What is the necessary background to understand this
work?

» In scientific papers usually very short.

» Know your audience!
» Only background that is really necessary!

Problem statement (if necessary)

» What is the specific problem? Why is it important?
» Example if necessary

» Sometimes necessary to tell the reader that there is a
problem

The contribution

» Main part of the paper
» Describes the own approach, the innovation

» Readable, verifiable! Examples where necessary!

Evaluation / Proof

Evaluation critical
What is the evaluation criteria?
Case studies? Empirical studies?

vV Vv VvV Vv

Does your innovation scale up? Does it solve real
problems?

» Report experience
» Readable, verifiable! Can be assessed and replayed
» Separate data from interpretation

Discussion (if appropriate)

» Interpret results

» Advantages and Disadvantages

» (Comparison to related approaches)
» Threats to validity

Related Work

» What are others doing?

» How does this differ from your work? (is your approach
better? are there trade-offs? synergies?)

» Also discuss the relationship to YOUR prior work

» Claims of contribution are more convincing in the
context of related work

» Common reviewer comments:
“The paper omits important related work”

“The authors describe the related work but don't compare their
work”

Conclusion and Future Work

» Summary

» Results, what has been achieved

» What's missing? New research questions?
» Bigger context, long-term goals?

» Clarify the contribution with respect to the promises in
abstract, introduction, and evaluation

References

» Give credits to previous and contextual work
» Reference quotes, claims, previous results

» Only relevant, up-to-date references
» Prefer original source over secondary literature

» Prefer journal to conference to workshop to technical
report to web pages

» Do not cite common knowledge (e.g., binary tree,
propositional formula)

Getting Started

Student Conference on Software Engineering
and Database Systems 22

Writing is Work

» Few people enjoy to write and revise
» Writing is part of a profession

» Academic writing # fiction (inspiration, creativity, art)
» Writing to convey information
» Clarity instead of artistic prose

» = Learn and practice
» > Welcome feedback and criticism

Why Learn to Write Well

» Poorly written paper:
ambiguity leads to misunderstanding
omissions frustrate
obscurity makes it difficult to reconstruct authors intentions
— poor reviews, rejections
— frustrated students
— little impact

» Difficult to understand structure = less focus on the
content

» Even the best contribution is not convincing when it is
difficult to understand

» Lazy presentation - impression of unimportant work

Getting Started

» Just write
» Make an outline or slides

Discuss this outline with you peers/supervisers

» Make a schedule and stick to it
» No excuses

» Write first, revise later

Excuses

» | can’t find time to write (I would write more if | had the
time)
Schedule a time, commit to it!
» | need to do more analysis first / read more papers first
Do it in your scheduled time! Measure progress.

» | need new computer/printer/software/...

» Waiting till | feel like it / waiting for inspiration
Technical writing is work
Even novelists/poets reject notion of inspiration

» Writers block
Does not exist for technical writing

06:00

07:00

08:00

09:00

10:00

11:00

13:00 Klicken Sie hier,]

| um einen Termin

15:00

16:00

17:00

15:00

19:00 |

Scheduled Writing

» Productivity gains:

A

3
=
<
5 2
o,
3
a0
<
A~

1

Abstinent Spontaneous Contingency .
(no non-emergency (50 sessions, Management BOlce 1 990

writing) when inspired) (50 sessions, forced)

Motivational Tools

» Setting goals
Overall goals, project goals
Plan deadlines

Concrete goal for each day (writing first three paragraphs of
discussion section, write at least 200 words, revise section 3,
reconcile reference list, reread reviewers comments, ...)

» Set priorities
Important vs Urgent

» Monitor progress
e.g. simple table: date, project, #words, goals met?

Rewrite

» A paper is never “finished”

» Improve by rewriting

» Incrementally improve paper

e

is too dumb or too lazy to keep pace with the walsanle train
of thought. My sympathics are entireldy with hh.)ﬂn-'o-m
So—dumb, (If the reader is lost, it is generally because the
writer ef—she—articde has not been careful enough to keep
him on the preper path,

LTM‘: carelessness can take any number of diffowent fornms,
Perhaps a sentence is so excessively lene-and cluttered that
the reader, hacking his way through @i the verbiage, simply
doesn't know whatirhum means, Perhaps a sentence has
been so shoddily constructed thet the reader could read it in
any orm_mmm ways,
<he writep ie-srying—te Ferhaps the
writer has switched pronouns in mid-gentence, or perhaps-ha
has switched tenses, so the reader loses track of who is
t.alk:lngf-ﬂ%or 4xagtdy when the action took place, Fer=
haps 13=aetrt'.em:e B is not & logical sequel to fentcnu A - the
writer, in whose head the conncction is porfeowvdy clear, has

Tharal rovid
not e the miscing link, Per-

il
plecing it out like an ancient rune, making guesses and moving

on. But he won't do this for long. We—whii-seer—sun—sus—of—
~pesience, (The writer is making him work too hard ~Syhemdes
—— el

4han—he—ohould-heve—te—work—(and the reader will look for

LY
m‘nho is better at his craft.

& writer must therefore constantly ask himself: What am
I trying to say in—shis-sentancel gu.rprumgy often, he
doesn't knmr.L m}hm he must look 3t what he has Juss-
written and ask: Have I said it? In it clear to someone
—~ / the subject for the first time? If it's
mu)dm-, .it is because some fuzz hos worked its way into the
machinery. The clear writer is a person whe—is clear-headed

enough to see this stuff for what it is: fuss,

L 1 don't mean so—supgass that some peoplc are born
clear-headed and are therefore netural writers, whereas
‘:ﬂl-poph are naturally fuzsy and will +hesefers never writs
well, Thinking clearly h:cn-m cocnscious act that the

writer mﬂ.‘ - upon himself, just as if he wers

a A are athar ledmd o f s s b bh;m Yl & s

First Steps

» Make an outline

» Or make a presentation

» Write first version, revise later

2
gCIDE: Language-Independent Safe Introduction Safe Composition/Generation AST-Based Feature Assignment
Composition of Features 4 A
+ Software Product Lines + Features + Levels + Explain AST
+ CIDE: Virtual Separation of F eatures for Java %Enwr& every configuration is parseable
+ AST-Based, Preprocessor Semartics Ensure BvErY configration 15 compilable e
FSE 20087 . Benefits Ensure consistency for poldingual systems sl
o it Ensure every configuration is semantically correct —
Christian, Sven, Don, Martin?, Salva?, Marko? ranulartty (maybe using untt tests?) S P
Based on Abstract Syntax (not necessary to deal « Whatto check - | = - |
with syntax elements) i e
Safe Configuraion/Transformations é\selededﬁrum:er Of“wv:;:j:at'o;;; 9 Geadrsl e I = I
+ Challenge: Principles {what can be colored), Smﬁ;g?@,ﬂ:&mna ° ¥ @ fediure mocel, 8.9. - - JF-
Language Independent S afe Composition A
Every configuraion
Slide 1 Slide 2 Slide 3 Slide 4
6
Lessons learned from Java-CIDE Generalizing Rules/Principles Supported Languages Discussions: Flexibility vs. Safety
+ Starting Point Java + Default Values + Featherweight Java + Amount of Structure in a Language
+ Subtree Rule, Exception required * Wrappers + Java + Parse treesvs. abstract sy rtax trees
+ Optional-Only Rule, Exception required? * 9CIDE Grammar (annotated grammar+parser ' C + Validation {incl. Palylingual systems)
generator+reflective AST generator) . C# + Minar poirts
+ Bali (gCIDE) Difficutties through Preprocessor
+ ECMAScriptiJavaScript Type system for further analysis
+ Smalltalk? Haskell? Performance
« XML
Slide 5 Slide & Slide 7 Slide 8
10

Case Study

« Java: redo GPL example {trivial)

Conclusion

+ Safe Composition vs. Flexibility

First Steps

‘\section{Introduction}
$SPL introduction. development of many variants in parallel, generation-compile
$many variants, testing etc -> novel approaches needed

$preprocessor currently common, discussion about alternative implementations, }
whether longterm as well, tradeoffs,benefits, not discussed here

$type system for entire product lines (all variants are well typed), detection
$search for a simple solution, backward compatible, tool support, practical, sc
$formalization for java subset, proof with coq, implementation for full java ar
in several SPLs by others

$own and other prior work

$summary contributions

First Steps

‘\section{Introduction}

$8PL introduction. development of many wvariants in parallel, generation-compils
A ‘\emph{software product line (SPL)} is an efficient means to create a family c
domain~‘\cite{architectureBook,spleBook}. Instead of implementing each program f
modeling a domain with features (increments in functionality relevant for stake
‘Zemph{variants} from some assets that are common to the SPL~\cite{foda,architec
common code base, we can generate different variants, tailored to specific usac
between the phases SPL implementation (in which all wvariants are developed in ¢
execution.

$many variants, testing etc -> novel approaches needed

While the flexibility of SPLs to generate different tailored variants is an img
strength~‘\cite{architectureBook,spleBook}, i1t comes at a price of increased cox
developers implement virtually millions of variants in parallel. Testing SPLs 1
gingle product must be tested but potentially millions of different wvariants, =
in which a certain feature or feature combination is selected~\cite{gpleBook, TE
variants are never or rarely generated (e.g., only late after initial developme
variant), potential errors might go undetected for a long time, until they are
generating, compiling, and running all variants is not feasible for most SPLs ¢
therefore, novel approaches are needed that check the entire SPL itself insteac
igolation.

orocessor currentl Vocommorn, dis

S native implementations, k
ner longterm as well, tradeoffs, be ’

$type system for entire product lines detection

Typical Problems

missing motivation (why is it important?)
unclear goal, unclear contribution

missing reasoning (“that’s the way | did it”)]
dead-end discussions, unused background

>

>

>

>

» unjustified claims
» missing cohesion

» bigger picture missing (just details)
» missing conclusions or results

» jargon, background missing

>

related work missing

Revising for Clarity: Sentences

35

Revising a sentence for clarity — Example 1

» Bad: “Termination occurred after 23 iterations”
» Good: “The program terminated after 23 iterations.”

Goal:
» make Actor explicit
» as subject

36

Revising a sentence for clarity — Example 2

» Bad: “Determination of policy occurs at the presidential
level”

» Good: “The President determines policy”

37

Revising a sentence for clarity — Example 3

» Bad: “There is a need for further study of this program”

» Good: “The engineering staff must study this program
further”

38

Revising a sentence for clarity — Key idea

» You’'re telling a story

» Figure out actions, and the agents doing them
» Action =verb

» Agent = subject

Agents sometimes might be abstract, if they're familiar to
readers or the abstractions are critical.

39

Revising a sentence for clarity

Consequences (not fixed rules):

»Try to limit empty/weak verbs

Example: “perform typechecking” -> typecheck
“there is a <nominalization>”

»Limit passive (but see later)

40

Revising a sentence for clarity

Consequences (not fixed rules):

»Limit metadiscourse
Bad: “It seems to us a plausible conjecture that ...”
Don’t give it the main verb, move it aside.
Better: “... in our opinion ...”/”... according to our conjecture ...”
If metadiscourse is important: “we conjecture”

41

Revising: Beyond Single Sentences

42

Revising sentences together: cohesion

» Go from old topics to new, avoid jumping between
topics.

» This might require using passive.

43

Passive is fine for cohesion

» Good:
“We thought we had a good agreement. Then we found

out who killed it: The agreement was broken by the
partners.”

» Bad:
“We thought we had a good agreement. Then we found
out who killed it: The partners broke the agreement.”

44

Repetition

» Good:
“We thought we had a good agreement. Then we found

out who killed it: The agreement was broken by the
partners.”

» Bad:
“We thought we had a good agreement. Then we found
out who killed it: The partners broke the agreement.”

45

Repetition
“Don’t reuse the same word” is common advice, but has

lots of downsides:

» synonyms for technical terms can be confusing (readers
need to learn more terms than otherwise needed)

» pronouns can be used if they are not ambiguous

46

Line of Thoughts & Cohesion (Roter Faden)

» Maintain cohesive line of thoughts

» Split text into paragraphs
connect paragraphs

do not jump between topics

» One thought per paragraph

Werite topic sentence (e.g., first sentence or margin notes,
\marginpar)

» Remove unnecessary information

Topic Sentence — Example

Software product lines promise several benefits compared to individual devel-
opment [Bass et al., 1998; Pohl et al., 2005]: Due to co-development and sy stematic

reuse, software products can be produced faster, with lower costs, and higher
quality. A decreased time to market allows companies to adapt to changed mar-
kets and to move into new markets quickly. Especially in embedded systems, in
which resources are scarce and hardware is heterogeneous, efficient variants can
be tailored to a specific device or use case [Beuche et al., 2004; TeZanovié et al,,
2004; Pohl et al.,, 2005; Rosenmiiller et al., 2009]. There are many companies that
report significant benefits from software product lines. For example, Bass et al
[1998] summarize that, with software product lines, Nokia can produce 30 instead
of previously 4 phone models per year; Cummins, Inc. reduced development time
for a software for a new diesel engine from one year to one week; Motorola ob-
served a 400 % increase in productivity; and so on.

More Topic Sentences

We decided to provide a formalization and proof for
both properties, after an initial implementation of our type
system for Java. We soon found that our implementation
was incomplete: We could not give a guarantee and some-

P O s T +r'\1"'hf'\'|' o W o W

times generated ill-typed variants bg

FJ is a minimal functional subset of the Java language
for which typing and evaluation are specified formally and
proved type-sound with the FJ calculus [8], [40]. It was
designed to be compact; its syntax, type judgments and
operational semantics fit on a single sheet of paper. FJ

So far, we did not discuss the nature of feature annotations
and the feature model. As illustrated in our examples
in Section 3, we are interested in reachability conditions
like the following sentence ‘whenever code fragment a is
present, then also code fragment b is present’ based on their
annotations and additional constraints of the feature model.
(We use the metavariables a and b to refer to arbitrary
annotatable code fragments.) Reachability is necessary, for
example, to check whether a method invocation in code
fragment a can always reference a method declaration in

Ivanced features such as interfaces.

Coherence

» Paper = Intro + Discussion
Best make your point in the intro, then elaborate.

» A paper is made by sections.

Each section should state its point at the beginning, then
elaborate.

» A section is made by paragraphs.

Each paragraph should state its point at the beginning, then
elaborate.

50

Coherence

The point ...or here
(best) (ok)

JOSEPH M. WILLIAMS

OTVLE

TOWARD CLARITY
AND GRACE

Coherence on a Large Scale

pa ragraphs sections

oD
HIHIT

SE ntences

e

Say what you say before you say it

» Explain the structure of the text

» Pick up the readers, guide them, prepare them

» Connect chapters and sections

» Support readers in skimming the paper (,,Querlesen®)

7. IMPLEMENTATION & CASE STUDIES

In the previous sections, we have designed and formalized a product-line—aware type sys-
tem. To demonstrate its practicality, we implemented it in our tool CIDE and performed a
series of case studies to evaluate performance and whether we can actually find type errors
0 existing product lines.

7.1 Implementation

Benefits of AST re presentation

The AST representation has three main benefits: improved expressiveness, easier
use, and opportunities for extensions.

First, we improve expressiveness, since we can classify more annotations as dis-

Avoid mere description

» Explain what you are doing and why

We implemented a type system 1n our tool CIDE and
performed a series of case studies.

VS.

To demonstrate practicality, we implemented a type system
in our tool CIDE and performed a series of case studies.

Self Contained

» You are an expert on the topic
—your readers are probably not

» Provide all necessary background information for
understanding your work

Be concise
Provide references for further details

A reference does not replace explaining necessary background

» Know your audience

Stating the Contribution

» Make contribution crystal clear
» Don’t be shy
» Be very specific: “we contribute”

The main innovation of this chapter is our revised type system for CFJ. The type system
known from literature can be simplified due to redundant premises at the some typing
rules. A smaller contribution is that we give some new and adapted examples of FJ
programs and CFJ product lines.

Perspective, Goals, and Contributions. In this paper, we examine func-
tional aspects in the light of AOR. Function evaluation imposes a fixed weaving

ardar kit alon o Byvnd rafanstaring caedar That 10 s1ira sconnat fantor cait aormant AL

Stating the Contribution (Example)

say that they are misused. To improve the situation, we make the following
contributions:

We analyze object-oriented modifiers used in FOP and identify several
shortcomings that lead to a limited expressiveness of feature-oriented
languages, undefined program behaviors, and inadvertent type errors.
We explore the design space of feature-oriented access control mechanisms
and propose three concrete access modifiers.

We present an orthogonal access modifier model, which integrates com-
mon object-oriented modifiers with our novel feature-oriented modifiers.
We offer an implementation of the proposed modifiers on top of the fully-
fledged feature-oriented compiler Ful.

We analyze ten feature-oriented programs and demonstrate that there is
a potential for feature-oriented modifiers in practical FOP.

Especially, the last two contributions are novel compared to an earlier version
of the paper presented at FOSD’09 [11].

Overclaims

» Be careful with overclaims that you cannot prove
» Narrow it down to your actual contribution, be precise

Our approach provides reliable high-performance data access

Existing database systems are slow and do not scale

Bibliography

Referencing Publications

» Reference ideas and prior work

» Always reference used or adopted figures
e.g., “Figure 2: Feature model of Berkeley DB, adopted from
[2]”
Copyright can be an issue

» NEVER copy and paste text from papers or websites
Paraphrase ideas
Also be careful when copying from yourself
More ethics on this later...

Citation Style

» Direct quotations are not common, except for definitions

» Typically use quotation at the end of a sentence

,We formally extend Featherweight Java (FJ) — a Java subset
proved type-sound using a concise calculus [41].”

,Without loss of generality, we focus on FODA-style feature
models [12, 43], because ...
,Parnas suggests dividing programs according to concerns
instead of purely technical considerations [13].”
» Do not use reference as subject; avoid “see”
“[13] shows additional statistics” (bad)
“see [13] for additional statistics” (bad)
“In [13], Hu et al. show additional statistics” (borderline)

“Hu et al. presented additional statistics [13]” (better)

Citing own work

» Make clear when referencing own work

“This problem was studied earlier, but in a less general setting
[2,3,5].” (bad)

“We studied this problem earlier [2,3,6], but in a less general
setting.” (better)

“In prior work, we studied this problem in a less general setting
[2,3,6]” (better)

Reference style

» In papers
Typically numbered references are used [1], [2]
Page numbers omitted

» In a thesis

rather use abbreviations [ATG09] or better author-year style
[Apel and Saake, 2006] (for Latex see package natbib)

Provide page numbers for books [S99, pp. 55-59]

» Different researchers prefer different styles. Ask advisers
when writing a thesis. Check formatting guidelines of
publishers.

Formatting Bibliographies

» References must include

Name of authors
Title

Where published
Journal Article: Journal & Volume & Edition & Pages

Conference Paper: Conference & (Series and volume) & Pages &
Publisher

Book: Publisher

Technical Report: Number & Department & University
Year

» ISBN, ISSN, DOI, location, date, editors and others are

optional and usually not included (if you include them be
consistent and include them for all references)

Clean your Bibliography

» An inconsistent/incomplete bibliography makes a bad
impression, check consistency early on

» When importing bibtex entries, check for style and
consistency

» Typical problems
Information missing (no publisher, no pages)

Inconsistent upper and lower case
Classbox/j: Controlling the scope of change in java
Aspect-Oriented Programming

Inconsistent names for conferences/journals, inconsistent abbreuv.

Proc. Int’ | Conf. Software Engineering (ICSE)

ICSE’ 08: Proceedings of the 30th International Conference on Software

Engineering
Proceedings International Conference on Software Engineering

Tip for BibTeX Users: Constants for Consistency

@String {OOPSLA = "Proc.\ Int'l Conf.\ Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA)"}

@String {ICSE = "Proc.\ Int'l Conf.\ Software Engineering (ICSE)"}

@String {ECOOP = "Proc.\ Europ.\ Conf.\ Object-Oriented Programming (ECOOP)"}

@String{TSE = "IEEE Transactions on Software Engineering (TSE)"}

@String{CACM = "Communications of the ACM"}

@String {ViISPLE = "Proc.\ SPLC Workshop on Visualization in Software Product Line
Engineering (ViSPLE)"}

@String {LNCS = "Lecture Notes in Computer Science"}

@String{GI = "Gesellschaft f{\"u}r Informatik (GI)"}

@String{ACM = "ACM Press"}

@String {Springer="Springer-Verlag"}

@inproceedings { LBL:ICSEQ6,
author = {Jia Liu and Don Batory and Christian Lengauer},

title = {Feature Oriented Refactoring of Legacy Applications},
booktitle = ICSE, publisher=ACM, address=ACMAddr, year = 2006,

isbn = {1-59593-375-1}, pages = {112--121} }

Examples

» Rick Rabiser, Paul Grinbacher, and Deepak Dhungana.
Supporting product derivation by adapting and augmenting
variability models. In Proc. Int’l Software Product Line
Conference (SPLC), pages 141-150, IEEE Computer Society,
2007.

» Christian Prehofer. Feature-oriented programming: A fresh
look at objects. In Proc. Europ. Conf. Object-Oriented

Programming (ECOOP), volume 1241 of Lecture Notes in
Computer Science, pages 419-443, Springer-Verlag, 1997.

» Benjamin C. Pierce. Types and Programming Languages. MIT
Press, 2002.

» David L. Parnas. Designing software for ease of extension and
contraction. IEEE Transactions on Software Engineering (TSE),
SE-5(2):128-138, 1979.

No Publisher?

» Sometimes proceedings of workshops are published in
technical reports by companies or universities

Florian Heidenreich, llie Savga, and ChristianWende. On
controlled visualisations in software product line engineering. In
Proc. SPLC Workshop on Visualization in Software Product Line
Engineering (ViSPLE), pages 303—313, Lero, 2008a.

» When papers of a workshop are only published online,
provide URL

Sean McDirmid and Martin Odersky. The Scala plugin for
Eclipse. In Proc. ECOOP Workshop on Eclipse Technology
eXchange (ETX), 2006. published online http://
atlanmod.emn.fr/www/papers/eTX2006/.

Referencing URLs

» Don’t

» Consider using a footnote instead

» If you really must reference an URL, provide date of access
Eclipse Website, http://eclipse.org, accessed June 12, 2009

» If you can provide authors
LE BERRE, D., PARRAIN, A., ROUSSEL, O., AND SAIS, L. 2006. SAT4J: A
satisfiability library for Java. http://www.sat4j.org.
» Reference specific version of wikis or other pages that keep a
history

http://en.wikipedia.org/w/index.php?
title=Bibliography&oldid=351449917
http://lampiro.googlecode.com/svn/!svn/bc/30/trunk/

For further reading

On Productivity/Procrastination:

» Paul J. Silvia. 2007. How to Write a Lot: A Practical Guide
to Productive Academic Writing. American Psychological
Association.

70

For further reading

On writing:
» Joseph M. Williams, Gregory G. Colomb. 1995. Style:
Toward Clarity and Grace. University of Chicago Press.

Online summaries:
3

71

