Presentations

Paolo Giarrusso

(mostly based on material by Christian Kästner, Graham Horton)

Presentations at student conference

- ▶ 15 min Presentation (25 for two people)
- ▶ 10 min Question & Answers
- Finish late: cut off
- Finish early: more questions
- > 3 Presentations per session
 - Agree on one notebook or prepare/practice to switch

Preparation

- Prepare for a talk!
- Preparation takes time (20x time of actual presentation)
- Do not prepare slides the evening before!

Presenting Scientific Results

- Before writing a paper
 - Present ideas to colleagues for discussion
 - Put your ideas into order
 - Think about visualizations
- After writing a paper
 - Presenting an accepted paper at a workshop or conference
 - Give a rough overview: Problem, Solution, Evaluation
 - Convince audience to read the paper
 - Initiate a discussion (workshop)
- Paper and presentation often do not perfectly align
- (Lecture != Presentation)

Paper versus presentation

- In both:
 - motivation
 - clarity
 - structure
- ▶ In presentation:
 - Less time
 - Fixed time
 - Your presence matters

Prepare for a very large room

Workshop Room

What makes a successful presentation?

Facts

- Content
- Structure
- Cohesion / line of thoughts

Visuals

- Design of slides
- Visualizations

Appearance

- Body language
- Language
- Subjective impression

Structure

Goals

- Every presentation has a goal
- Every presentation has several tasks
- Answer these questions first:
 - What is my goal?
 - What is my main point?
 - Why should the audience listen?
 - Why is the topic interesting?
 - Who will benefit from this presentation?

Structure

- Beginning: Connect to audience
 - Introduce yourself
 - Motivate your topic (why should they listen?)
 - Executive summary (main points, main results)
 - (Calm down)
- Middle: Convey information
 - Facts, Arguments, Results, Discussion
- End: Take home message
 - Summarize main points
 - Emphasize consequences
 - Future work

Beginning

- What is the general problem?
- Why is this problem interesting?
- What is the specific problem?
- Why is this problem interesting?
- Which question(s) to answer?
- (State of the art)
- How to proceed and why?
- Goals and tasks?

Middle

- What background knowledge is necessary?
- Which problems need to be solved?
- Which decisions to make?
- Which assumptions/simplifications and why?
- Experiments
- Results
- Interpretation
- Does this answer my hypothesis?

End

- What was the main result?
- How general are these results? (threats to validity)
- What are the consequences?
- What remains open? Which new questions arose? Future work?
- Thank for attention

Typical problems

- Too quick introduction
- Problem remains unclear
- Consequences / results unclear
- Too much "what I did"
- ▶ Too little "why did I do this (each step)"
- Too little "what's the point"
- No connection between thoughts / slides
- Missing cohesion

Slides

Technical Hints

- 20 min, about 7 to 15 slides
- Fontsize >= 18, sans-serif fonts (this is 29)
- Name, title and affiliation on every slide
- Slides number on every slide
- At most one topic per slide
- Visualization, colors where necessary
- Avoid overfull slides (> 7 objects or > 36 words)
- Avoid full sencences, instead summarize content using headwords.

Structure slide?

- Only if you have something to say
- Maybe only after motivation slides

Christian Kästner: Virtual Separation of Concerns **Agenda** Problems and Advantages of Preprocessors 4 Improvements Views Visual Representation Disciplined Annotations Product-Line-Aware Type System Summary and Perspective

Visualizations

- Assists memory
- Assists comprehension
- Emphasizes the content
- More accessible style
- If
 - Meaning is clear
 - Visualized content is correct
 - Text is readable

Different kinds of visualizations

- Diagrams
- Photos
- Clip-arts

Simplify visualizations

▶ A microprocessor consists of X, Y and Z...

Figure 1. Pentium block diagram.

PRINCETON ARCHITECTURE MICROPROCESSOR MEMORY DATA CONTROL STATUS PRINCETON ARCHITECTURE MICROPROCESSOR MEMORY CONTROL CONTROL CLOCK

Animation

Use animation with care

- Use
 - to focus attention (~ laser pointer)
 - to visualize a process / several steps
- Do not use without specific purpose

f invoked again! 🕲

Animation: Die Todsünde

- Punkt 1 Blah blah blah blah blah blah
 - ▶ Punkt 1-1 Blah blah blah blah blah blah
 - ▶ Punkt 1-2 Blah blah blah blah blah blah
- Punkt 2 Blah blah blah blah blah blah
 - ▶ Punkt 2-1 Blah blah blah blah blah blah
 - Punkt 2-2 Blah blah blah blah blah blah
- Punkt 3 Blah blah blah blah blah blah

Abläufe visualisieren

▶Erklärung eines Warteschlangensystems:

Bank

Aufmerksamkeit lenken

Checklist for visualizations

- Can text be replaced by visualizations?
- Is the meaning clear?
- Are the facts correct?
- All texts and details readable?
- No unnecessary or misleading elements?
- Does it help comprehension?

Presentation

Communication

You cannot not communicate

Where to stand

- Facing the audience
- Not too far away
- Don't hide the projected image
- Don't hide behind furniture

Posture

- Upright
- Open
- Relaxed
- Stable

Movement

- Don't fidget
- Emphasize thoughts with gestures and facial expressions
- Calm, but not fixed

Eyes

- Look at the audience
- Try to look at everybody naturally

Do not stare at screer

Voice / Language

- Slow enough
- Loud enough
- Clear pronounciation
- Enough pauses
- Avoid monotony
- Keep sentences simple
- Don't read

Timing

- Practice timing
- If faster when nervous plan ahead
- Have a timer during presentation
- Check speed during presentation

 Practice fast and slow version of last 3 slides (maybe have an extra slide you might skip)

Some Last Tips

- Always be prepared
 - Have a PDF version of your slides
 - On at least 2 USB sticks & internet
 - Prepare presentation before the session, usually only one laptop
- Laser pointer hard to see in large rooms -> animations instead
- No dress code in computer science conferences
- Practice timing and phrasing!

Feedback & Grading

▶ 6 Criteria

- Motivation and goals clear?
- Content (structure, cohesion, clarity, conclusion?)
- Slides (amount, style, visualizations)
- Presentation & body language
- Clarity (understandable, slang, missing background inform.)
- Timing (don't be late!)
- Feedback sheet for everybody

Take-away slide

- Prepare for a presentation
- Make goals and motivation crystal clear
- Careful slide layout with visualizations where suitable
- Calm and focused presentation