
Introduction	to	Software	Technology	
Software	Quality	

	Klaus	Ostermann	
	

	
	Einführung	in	die	Softwaretechnik	1	

Testing	

Some	slides	by	C.	Kästner,	T.	Ball	and	J.	Aldrich	

Einführung	in	die	Softwaretechnik	2	

Why	test?	

Einführung	in	die	Softwaretechnik	3	

Testing:	Challenges	

Einführung	in	die	Softwaretechnik	4	

}  Testing	is	a	huge	cost	of	product	development	
}  Test	effectiveness	and	software	quality	hard	to	measure	
}  Incomplete,	informal	and	changing	specifications	
}  Downstream	cost	of	bugs	is	enormous	
}  Lack	of	spec	and	implementation	testing	tools	
}  Integration	testing	across	product	groups	
}  Patching	nightmare	
}  Versions	exploding	

Example:	Testing	MS	Word	

Einführung	in	die	Softwaretechnik	5	

}  inputs	
}  keyboard	
}  mouse/pen	
}  .doc,	.htm,	.xml,	…	

}  outputs	(WYSIWYG)	
}  Printers	
}  displays	
}  doc,	.htm,	.xml,	…	

}  variables	
}  fonts	
}  templates	
}  languages	
}  dictionaries	
}  styles	

}  	Interoperability	
}  Access	
}  Excel	
}  COM	
}  VB	
}  SharePoint	

}  Other	features	
}  34	toolbars	
}  100s	of	commands	
}  ?	dialogs	

From	Microsoft	Office	EULA…	

Einführung	in	die	Softwaretechnik	6	

From	GPL	

Einführung	in	die	Softwaretechnik	7	

The	goals	of	testing	

Einführung	in	die	Softwaretechnik	8	

}  Not-quite-right	answers	
}  Make	sure	it	doesn’t	crash	
}  Regression	testing	–no	new	bugs	
}  Make	sure	you	meet	the	spec	
}  Make	sure	you	don’t	have	harmful	side	effects	

}  Actual	goals	
}  Reveal	faults	
}  Establish	confidence	
}  Clarify	or	represent	the	specification	
}  No	absolute	certainty!	

THE	limitation	of	testing	

Einführung	in	die	Softwaretechnik	9	

Testing	can	only	show	the	presence	
of	errors,	not	their	absence	

-	E.W.	Dijkstra	

Black-box	Testing	

Einführung	in	die	Softwaretechnik	10	

}  Verify	each	piece	of	functionality	of	the	system	
}  Black-box:	don’t	look	at	the	code	

}  Systematic	testing	
}  Test	each	use	case	
}  Test	combinations	of	functionality	(bold	+	italic	+	font	+	size)	

}  Generally	have	to	sample	due	to	combinatorial	explosion	
}  Test	incorrect	user	input	
}  Test	each	“equivalence	class”(similar	input/output)	
}  Test	uncommon	cases	

}  Generating	all	error	messages	
}  Using	uncommon	functionality	

}  Test	borderline	cases	
}  Edges	of	ranges,	overflow	inputs,	array	of	size	0	or	1	

Example:	Black-box	Testing	of	Binary	Search	

Einführung	in	die	Softwaretechnik	11	

}  in/not	in	the	array	
}  array	with	duplicate	elements	
}  empty	array,	1-element	array	
}  even	vs.	odd	array	sizes	
}  unsorted/sorted	array	

}  Spec	says	array	must	be	sorted	
}  Smaller	or	greater	every	element	in	array	

White-box	Testing	

Einführung	in	die	Softwaretechnik	12	

}  Look	at	the	code	(white-box)	and	try	to	systematically	cause	it	
to	fail	

}  Coverage	criteria:	a	way	to	be	systematic	
}  Function	coverage	

}  Has	each	function	been	executed?	

}  Statement	coverage	
}  Has	each	statement	in	the	program	been	executed?	

}  Edge	coverage	
}  Have	both/all	sides	of	each	branch	been	taken?	

}  Condition	coverage	
}  Has	each	boolean	subexpression	evaluated	to	both	true	and	false?	

White-Box	Testing	

Einführung	in	die	Softwaretechnik	13	

}  Coverage	criteria:	a	way	to	be	systematic	(continued)	
}  Path	coverage	

}  Has	each	possible	route	through	the	code	been	executed?	
}  Note:	infinite	number	of	paths!	
}  Typical	compromise:	0-1-many	loop	iterations	

}  Exercise	data	structures	
}  Each	conceptual	state	or	sequence	of	states	

}  Typically	cannot	reach	100%	coverage	
}  Especially	true	of	paths,	conditions	

}  Many	tools	exist	to	measure	and	visualize	code	coverage	of	tests	
}  Even	though	coverage	criteria	can	be	applied	systematically,	no	
definite	conclusion	about	the	quality	or	lack	of	bugs	can	be	
drawn	from	100%	XYZ-coverage	
}  Dijkstra’s	verdict	still	holds	

Unit	Tests	

Einführung	in	die	Softwaretechnik	14	

}  Focus	on	one	function	or	module	at	a	time	
}  May	need	to	call	other	functions	for	setup	

}  Usually	automated	
}  Stubs	or	mock	objects	serve	to	replace	modules	used	by	
the	module	to	be	tested	

}  A	driver	initializes	the	test	environment	
}  Driver	and	stubs/mock	objects	together	are	often	called	test	
fixture	

}  Unit	tests	often	specified	by	developer	
}  Always	in	Extreme	Programming	

Unit	Tests	

Einführung	in	die	Softwaretechnik	15	

Example	Unit	Test	using	JUnit	

Einführung	in	die	Softwaretechnik	16	

public class OrderStateTester extends TestCase {
 private static String TALISKER = "Talisker";
 private static String HIGHLAND_PARK = "Highland Park";
 private Warehouse warehouse = new WarehouseImpl();

 protected void setUp() throws Exception {
 warehouse.add(TALISKER, 50);
 warehouse.add(HIGHLAND_PARK, 25);
 }
 public void testOrderIsFilledIfEnoughInWarehouse() {
 Order order = new Order(TALISKER, 50);
 order.fill(warehouse);
 assertTrue(order.isFilled());
 assertEquals(0, warehouse.getInventory(TALISKER));
 }
 public void testOrderDoesNotRemoveIfNotEnough() {
 Order order = new Order(TALISKER, 51);
 order.fill(warehouse);
 assertFalse(order.isFilled());
 assertEquals(50, warehouse.getInventory(TALISKER));
 }

Unit	Tests	

Einführung	in	die	Softwaretechnik	17	

}  The	style	of	testing	on	the	previous	slide	uses	state	
verification	
}  We	determine	whether	the	exercised	method	worked	
correctly	by	examining	the	state	of	the	system	under	test	and	
its	collaborators	after	the	method	was	exercised.	

}  Mock	objects	enable	a	different	approach	to	testing	
}  Mocks	use	behavior	verification	

}  check	if	the	order	made	the	correct	calls	on	the	warehouse.		
}  Do	this	by	telling	the	mock	what	to	expect	during	setup	and	asking	
the	mock	to	verify	itself	during	verification.	

Unit	Tests	using	Mock	Objects	(1/2)	

Einführung	in	die	Softwaretechnik	18	

public class OrderInteractionTester extends MockObjectTestCase {
 private static String TALISKER = "Talisker";
 public void testFillingRemovesInventoryIfInStock() {
 //setup - data
 Order order = new Order(TALISKER, 50);
 Mock warehouseMock = new Mock(Warehouse.class);

 //setup - expectations
 warehouseMock.expects(once()).method("hasInventory")
 .with(eq(TALISKER),eq(50))
 .will(returnValue(true));
 warehouseMock.expects(once()).method("remove")
 .with(eq(TALISKER), eq(50))
 .after("hasInventory");

 //exercise
 order.fill((Warehouse) warehouseMock.proxy());

 //verify
 warehouseMock.verify();
 assertTrue(order.isFilled()); } …

Unit	Tests	using	Mock	Objects	(2/2)	

Einführung	in	die	Softwaretechnik	19	

public void testFillingDoesNotRemoveIfNotEnoughInStock() {
 Order order = new Order(TALISKER, 51);
 Mock warehouse = mock(Warehouse.class);

 warehouse.expects(once()).method("hasInventory")
 .withAnyArguments()
 .will(returnValue(false));

 order.fill((Warehouse) warehouse.proxy());

 warehouseMock.verify();
 assertFalse(order.isFilled());
 }

Integration	Testing	(IT)	

Einführung	in	die	Softwaretechnik	20	

}  IT	is	the	phase	in	software	testing	in	which	individual	
software	modules	are	combined	and	tested	as	a	group	

}  It	occurs	after	unit	testing	and	before	system	testing	
}  Purpose:	verify	functional,	performance,	and	reliability	
requirements	placed	on	major	design	items	

}  IT	uses	black-box	testing	
}  IT	often	structured	as	top-down	IT	or	bottom-up	IT	

}  Top-down	needs	stubs,	bottom-up	doesn’t	
}  With	top-down,	major	control	functions	can	be	tested	early	

Integration	Testing	–	Top	Down	Approach	

Einführung	in	die	Softwaretechnik	21	

}  Integration	process	is	performed	in	a	series	of	steps	
1.  Main	control	module	is	used	as	test	driver,	stubs	are	

substituted	for	all	components	directly	subordinate	to	
main	control	module	

2.  Subordinate	stubs	are	replaced	one	at	a	time	with	
actual	components	

3.  Tests	are	conducted	as	each	component	is	integrated	
4.  On	completion	of	each	set	of	tests,	another	stub	is	

replaced	with	the	real	component	

Integration	Testing	–	Bottom-up	Approach	

Einführung	in	die	Softwaretechnik	22	

}  Steps	
1.  Low-level	components	are	combined	into	clusters	that	

perform	a	specific	subfunction	
2.  A	driver	is	written	to	coordinate	test	case	input	and	output	
3.  The	cluster	is	tested	
4.  Drivers	are	removed	and	clusters	are	combined	moving	

upward	in	the	program	structure	

System	Test	

Einführung	in	die	Softwaretechnik	23	

}  Test	entire	end-to-end	system	functionality	in	black-box	
style	

}  Often	organized	by	use	cases	
}  Often	driven	by	separate	testing	team	

}  Customer	/	customer	representative	in	XP	

}  Many	different	forms	of	system	tests	
}  GUI	testing,	Usability	testing,		Performance	testing,	
Accessibility	testing,	Stress	testing,	…	

Acceptance	Tests	

Einführung	in	die	Softwaretechnik	24	

}  Functional	tests	that	the	customer	uses	to	evaluate	the	
quality	of	the	system	

Design	for	Testing	

Einführung	in	die	Softwaretechnik	25	

}  Ensure	components	can	be	tested	in	isolation	
}  Minimize	dependences	on	other	components	
}  Provide	constructors	to	set	up	objects	for	testing	

}  Design	techniques	exist	to	ease	testability	
}  Use	interfaces	to	allow	usage	of	mock	objects	or	stubs	

}  “Dependency	Injection”	

}  Some	PLs	provide	support	for	testing	
}  AspectJ	is	frequently	used	for	testing	

Test-driven	Development	(TDD)	

Einführung	in	die	Softwaretechnik	26	

}  Goal:	
}  have	enough	unit	tests	
}  check	they’re	effective	

Design	for	testing:	TDD	

Einführung	in	die	Softwaretechnik	27	

}  Method:	to	develop	a	program	fragment	
1.  Write	a	test	
2.  Stub	the	functionality	
3.  Ensure	that	the	test	actually	fails	–	if	not,	the	test	is	not	

restrictive,	fix	it!	
4.  Implement	enough	functionality	for	the	test	to	start	passing,	

but	no	more	
5.  Iterate	by	adding	more	tests	
6.  Stop	when	tests	force	the	desired	behavior	to	be	

implemented	

Design	for	testing:	TDD	

Einführung	in	die	Softwaretechnik	28	

Result:	
}  we	get	more	confidence	that	

}  all	functionality	is	tested,	because	we	don’t	implement	
anything	which	is	not	tested!	

}  tests	actually	check	what	they	should!	

}  tests	are	a	form	of	specification	(especially	in	BDD,	a	
variant	of	TDD)	

}  More	test	code,	thus	also	more	code	to	maintain	
}  There	are	techniques	to	ease	maintenance	

}  But	again,	no	absolute	guarantee	

Design	by	Contract	

Einführung	in	die	Softwaretechnik	29	

}  General	meaning	
}  Specify	a	contract	between	client	and	implementation	of	a	
module	

}  Using	pre-	and	post-conditions	
}  System	works	if	both	parties	fulfill	their	contract	

}  Specific	setting	of	testing	
}  Verify	pre-and	post-conditions	while	running	
}  Assign	blame	based	on	which	one	fails	
}  Turns	a	system	execution	into	a	set	of	unit	tests	

Example:	Design	by	Contract	using	the	Java	Modeling	
Language	(JML)	

Einführung	in	die	Softwaretechnik	30	

/*@
 @ public normal_behavior
 @ requires ! isEmpty();
 @ ensures
 @ elementsInQueue.equals(((JMLObjectBag)
 @ \old(elementsInQueue))
 @ .remove(\result)) &&
 @ \result.equals(\old(peek()));
 @*/
Object pop() throws NoSuchElementException;

Contracts	are	checked	dynamically	if	the	code	is	compiled	with	the	
JML	compiler	

Regression	Testing	

Einführung	in	die	Softwaretechnik	31	

}  A	suite	of	tests	is	run	every	time	the	system	changes	
}  Goal:	to	catch	any	(?)	new	bugs	introduced	by	change	

}  Need	to	add	tests	for	new	functionality	
}  But	still	test	the	old	functionality	also!	
}  Note:	in	some	cases,	old	test	cases	should	return	a	different	
result,	depending	on	the	change	that	was	made	

Nightly	Builds	

Einführung	in	die	Softwaretechnik	32	

}  Building	a	release	of	a	large	project	every	night	
}  Catches	integration	problems	where	a	change	“breaks	the	
build”	

}  Breaking	the	build	is	a	BIG	deal—may	result	in	midnight	calls	to	
the	responsible	engineer	

}  Typically,	run	regression	test	after	building	
}  Plot	progress	on	tests	over	time	

“Treat	the	daily	build	as	the	heartbeat	of	the	project.	If	
there	is	no	heartbeat,	the	project	is	dead.”	-	Jim	McCarthy	

Add	tests	for	each	defect	fixed!	

Einführung	in	die	Softwaretechnik	33	

}  If	existing	tests	don’t	already	cover	the	defect	
}  e.g.,	it	was	not	found	through	tests.	

}  Goal:	
}  To	check	that	the	defect	is	actually	fixed	
}  To	prevent	the	defect	from	being	reintroduced	

When	are	you	done	testing?	

Einführung	in	die	Softwaretechnik	34	

}  Most	common	
}  Run	out	of	time	or	money	

}  Can	try	to	use	statistical	models	
}  Only	as	good	as	your	characterization	of	the	input	
}  Which	is	often	quite	bad	
}  Exception:	stable	systems	for	which	you	have	empirical	data	

(telephones)	
}  Exception:	good	mathematical	model	(avionics)	

}  Can	seed	faults	
}  Halt	when	an	“adequate”	percentage	is	found	
}  Implication:	same	percentage	of	unknown	errors	found	
}  But	is	this	really	true?	

}  Rule	of	thumb:	when	error	detection	rate	drops	

Testing	Quality	Attributes	

Einführung	in	die	Softwaretechnik	35	

}  Throughput	
}  Increase	load	steadily	through	a	series	of	tests	until	
performance	is	unacceptable	

}  Load	profile	should	match	actual	operation	profile	of	system	
}  “Stress	testing”	tests	the	system	beyond	intended	design	limits	
}  Look	at	failure	behavior	
}  Identify	defects	related	to	heavy	load	

Testing	Quality	Attributes	

Einführung	in	die	Softwaretechnik	36	

}  Reliability	
}  Run	for	a	period	of	time	against	operational	profile,	estimate	
reliability	metric	

}  Challenges:	
}  Hard	to	know	correct	profile	
}  Expensive	to	generate	profile	
}  Need	large	test	cases	to	generate	statistical	confidence	
}  Which	is	irrelevant	anyway	if	the	profile	is	off	

}  Basically	no	good	way	to	do	this	
}  Alternative:	stress	testing,	again	

Testing	Quality	Attributes	

Einführung	in	die	Softwaretechnik	37	

}  Fault	tolerance	
}  Programmatically	cause	a	fault	and	test	that	the	system	can	
recover	

}  Security	
}  Attack	team	

}  Usability	
}  Measure	user	performance	on	some	task	

}  Portability	
}  Test	against	multiple	platforms	

}  Evolvability	
}  Design	extension	

Defect	Tracking	

Einführung	in	die	Softwaretechnik	38	

}  Organized	handling	of	defects	
}  Defect	description	
}  Problem	analysis	
}  Product	and	version	affected	
}  Originator,	Owner	
}  Status:	open,	confirmed,	closed	
}  Severity	
}  Date	reported,	fixed	

}  Widely	used	in	open	source,	industry	
}  Tools	like	Bugzilla	

Test	Plan	

Einführung	in	die	Softwaretechnik	39	

}  Strategy	
}  Unit?	Functional?		White/Black	box?	Design	by	contract?	
}  During	requirements?		Before	coding?		During	test	phase?	
}  Quality	attribute	testing?	
}  Nightly	builds?	
}  Completeness	criterion?	

}  Document	acceptance	tests	
}  Trace	each	requirement	to	one	or	more	acceptance	tests	

}  Tools	
}  Generation?	Regression?	Selection?	Coverage?	Defect	tracking?	

}  People	
}  Developer	or	dedicated	testers?	

Code	Reviews	

Einführung	in	die	Softwaretechnik	40	

Reviews	and	Inspections	

Einführung	in	die	Softwaretechnik	41	

}  A	family	of	techniques	
}  Pair	Programming	
}  Walkthroughs	
}  Inspections	
}  Personal	reviews	
}  Formal	technical	reviews	

}  Review	/	inspect	
}  To	examine	closely	
}  With	an	eye	toward	correction	or	appraisal	

}  People	(peers)	are	the	examiners	

Why	do	code	reviews?	

Einführung	in	die	Softwaretechnik	42	

}  Catching	errors	
}  Sooner	
}  More	and	different	

}  Improving	communication	
}  Crossing	organization	boundaries	

}  Providing	education	
}  Making	software	visible	

Results	

Einführung	in	die	Softwaretechnik	43	

}  Catching	most	errors	before	test	
}  Review	plus	test	is	much	cheaper	than	just	test	

}  Sample	results:	
}  10x	reduction	in	errors	reaching	test	
}  50	-80	%	total	cost	reduction	

}  Fewer	defects	after	release	
}  Substantial	cost	savings	in	maintenance	

}  Supported	by	study	at	HP		(R.	Grady)	
}  Testing	efficiency		(defects	found	/	hour)	

}  System	use	0.21	
}  Black	box	0.282	
}  White	box	0.322	
}  Reading/inspect	1.057	

Personal	Review	

Einführung	in	die	Softwaretechnik	44	

}  Features	
}  Informal	
}  Done	by	the	producer	

}  Implications	
}  Not	as	objective	
}  Available	to	any	developer	
}  Different	mindset	limits	screening	efficiency	

}  Need	for	review	
}  Product	completion	

Pair	Programming	

Einführung	in	die	Softwaretechnik	45	

}  Features	
}  Two	programmers	work	together	at	one	work	station	
}  One	types	in	code	while	the	other	reviews	each	line	of	code	as	
it	is	typed	

}  These	two	roles	are	switched	frequently	
}  Implications	

}  Knowledge	passes	between	programmers	–	with	
“promiscuous”	pairing	through	the	whole	team	

}  Studies	found	that	pair	programming	decreases	defects	and	
improves	discipline	and	productivity	

}  No	preparation	required,	default	way	of	coding	in	Extreme	
Programming	

Walkthroughs	

Einführung	in	die	Softwaretechnik	46	

}  Features	
}  Less	formal	
}  Producer	presents	or	provides	information	

}  Implications	
}  Larger	groups	can	attend		(education)	
}  More	material	per	meeting	
}  Less	preparation	time	
}  Harder	to	separate	explanation	and	justification,	product	and	presenter	

}  IEEE	1028	recommends	three	specialist	roles:	
}  The	Author	-	presents	the	software	product	in	step-by-step	manner	at	the	walk-

through	meeting,	and	is	probably	responsible	for	completing	most	action	items;	
}  The	Walkthrough	Leader	-	conducts	the	walkthrough,	handles	administrative	

tasks,	and	ensures	orderly	conduct	(and	who	is	often	the	Author)	
}  The	Recorder	-	notes	all	anomalies	(potential	defects),	decisions,	and	action	

items	identified	during	the	walkthrough	meetings.	

Inspections	

Einführung	in	die	Softwaretechnik	47	

}  Features	
}  Team	reviews	materials	separately	
}  Team	and	producers	meet	to	discuss	
}  May	review	selected	product	aspects	only	

}  Implications	
}  Focus	on	important	issues	
}  If	you	know	what	they	are	
}  More	material	per	meeting	
}  Less	preparation	time	

Review	before	merging	

Einführung	in	die	Softwaretechnik	48	

}  Each	change	must	be	reviewed	before	acceptance	
}  Pros:	higher-quality	changes	

}  More	defects	found	
}  The	author	is	more	careful	
}  and	documents	the	code	better	

}  Cons:	
}  slower	development	(?)	
}  risk	of	ego	problems	(to	manage)	

}  Used	for	instance	at	Google	and	in	good	Open	Source	
projects	

Formal	Technical	Review	

Einführung	in	die	Softwaretechnik	49	

}  Features	
}  Formal	
}  Scheduled	event	
}  Defined	procedure	
}  Reported	result	
}  Technical	

}  Not	schedule	
}  Not	budget	

}  Independent	review	team	
}  Producers	not	present	

Formal	Technical	Review	

Einführung	in	die	Softwaretechnik	50	

}  Implications	
}  More	preparation	time	
}  Less	material	per	meeting	
}  Product	must	stand	or	fall	on	its	own	

Team	Selection	for	Formal	Technical	Reviews	

Einführung	in	die	Softwaretechnik	51	

}  Manager	assigns	
}  Vested	interest	in	a	good	outcome	
}  Review	as	delegation	of	manager’s	responsibility	

}  Technical	competence	
}  Current	technology	
}  Objectivity	

}  Best	buddies	and	“outsiders”	

}  User	involvement	

Team	Size	

Einführung	in	die	Softwaretechnik	52	

}  Smaller	for	
}  Focus	
}  Scheduling	
}  Reasonable	output	volume	per	person-hour	

}  Larger	for	
}  Expertise	
}  Making	review	public	

}  Non-participating	observers	
}  Team	size	usually	between	3	and	7	

What	and	When	to	Review	

Einführung	in	die	Softwaretechnik	53	

}  Any	software	artifact	
}  requirements,	designs,	code,		
}  documentation,	procedures,	interfaces,	...	

}  Reviews	should	be	formally	scheduled	and	have	a	
predetermined	duration	

Review	Process	

Einführung	in	die	Softwaretechnik	54	

}  Producers	provide	materials	
}  Leader	schedules	meeting	
}  Individuals	prepare	
}  Team	holds	review	meeting	
}  Manager	gets	report	

Team	Task	Overview	

Einführung	in	die	Softwaretechnik	55	

}  Provide	a	good	review	
}  The	team	is	responsible	for	the	review,	not	the	product		(Don’t	
shoot	the	messenger)	

}  Find	issues	
}  Raise	them,	don’t	solve	them	

}  Render	an	assessment	decision	
}  Accept,	Accept	with	minor	revision,		
}  Revision	needed,	Reject		
}  Unanimous	approval	required	
}  Product	rejection	by	individual	veto		

Team	Leader	-	Tasks	

Einführung	in	die	Softwaretechnik	56	

}  Avoid	premature	reviews	
}  Coordinate	arrangements	

}  Materials	distribution	
}  Meeting	schedule	
}  Meeting	location	and	facilities	

}  Ensure	a	good	review	
}  Or	report	the	reason	for	failure	

}  Materials	missing	
}  Reviewers	missing	or	not	prepared	

Team	Leader	–	Run	the	Meeting	

Einführung	in	die	Softwaretechnik	57	

}  Act	as	chairperson	
}  Opening	and	introductions	
}  Procedure	guide		
}  Closing	

}  Act	as	facilitator	
}  Controlling	level	of	participation	

}  Enough	but	not	too	much	

}  Conflict	resolution		

}  Terminate	the	meeting	if	unproductive	

Reviewers	-	Tasks	

Einführung	in	die	Softwaretechnik	58	

}  Prepare	before	
}  Thorough	review	of	materials	

}  Participate	
}  Be	there	

}  Coming	late;	leaving	early	

}  Act	professionally	
}  Personal	agendas	
}  Big	egos	and	shyness	

}  Positive	and	negative	comments	
}  Balance;	courtesy;	preserving	what’s	good		

Recorder	

Einführung	in	die	Softwaretechnik	59	

}  Selection	
}  Any	competent	reviewer	
}  Single	or	multiple	recorders	
}  Rotating	responsibility	within	a	meeting	
}  Don’t	choose	leader	as	recorder	

}  Too	much	to	do	
}  Separation	of	power	

}  Task:	Get	it	in	writing	
}  Basis	for	report	

Review	Report	

Einführung	in	die	Softwaretechnik	60	

}  Purpose	
}  Tell	managers	the	outcome	
}  Early	warning	system	for	major	problems	
}  Provide	historical	record	

}  For	process	improvement	
}  For	tracking	people	involved	with	projects	

}  Contents	
}  Summary	
}  Product	issues	
}  Other	related	issues		

Summary	

Einführung	in	die	Softwaretechnik	61	

}  Code	Reviews	are	a	highly	effective	technique	to	improve	
software	quality	
}  And	many	other	beneficial	side	effects	

}  Not	used	nearly	enough	
}  Do	it!	

}  Personal	reviews,	Pair	programming	are	applicable	in	almost	
every	context	

}  Walkthroughs	for	student	projects	

