
Introduction	to	Software	Technology	
4.	GRASP	Patterns	

Klaus	Ostermann	

Einführung	in	die	Softwaretechnik	1	



GRASP	Patterns	

Einführung	in	die	Softwaretechnik	2	

}  Object	Design:		
}  “After	identifying	your	requirements	and	creating	a	domain	
model,	then	add	methods	to	the	software	classes,	and	define	
the	messaging	between	the	objects	to	fulfill	the	
requirements.”	

}  But	how?	
}  What	method	belongs	where?	
}  How	should	the	objects	interact?	
}  This	is	a	critical,	important,	and	non-trivial	task	



GRASP	Patterns	

Einführung	in	die	Softwaretechnik	3	

}  The	GRASP	patterns	are	a	learning	aid	to		
}  help	one	understand	essential	object	design	
}  apply	design	reasoning	in	a	methodical,	rational,	explainable	
way.		

}  This	approach	to	understanding	and	using	design	
principles	is	based	on	patterns	of	assigning	
responsibilities	



GRASP	-	Responsibilities	

Einführung	in	die	Softwaretechnik	4	

}  Responsibilities	are	related	to	the	obligations	of	an	object	in	
terms	of	its	behavior.	

}  Two	types	of	responsibilities:		
}  knowing		
}  doing		

}  Doing	responsibilities	of	an	object	include:		
}  doing	something	itself,	such	as	creating	an	object	or	doing	a	

calculation		
}  initiating	action	in	other	objects		
}  controlling	and	coordinating	activities	in	other	objects		

}  Knowing	responsibilities	of	an	object	include:		
}  knowing	about	private	encapsulated	data					
}  knowing	about	related	objects		
}  knowing	about	things	it	can	derive	or	calculate		



Design	patterns	in	architecture	
}  A	pattern	is	a	recurring	solution	to	a	standard	problem,		
in	a	context.	

}  Christopher	Alexander,	professor	of	architecture…	
}  Why	is	what	a	prof	of	architecture		
says	relevant	to	software?	

}  “A	pattern	describes	a	problem		
which	occurs	over	and	over	again		
in	our	environment,	and	then		
describes	the	core	of	the	solution		
to	that	problem,	in	such	a	way	that		
you	can	use	this	solution	a	million		
times	over,	without	ever	doing	it		
the	same	way	twice.”	



Patterns	in	engineering	
}  How	do	other	engineers	find	and	use	patterns?	

}  Mature	engineering	disciplines	have	handbooks		
describing	successful	solutions	to	known	problems	

}  Automobile	designers	don't	design	cars	from	scratch		
using	the	laws	of	physics	

}  Instead,	they	reuse	standard	designs	with	successful		
track	records,	learning	from	experience	

}  Should	software	engineers	make	use	of	patterns?	Why?	
}  Developing	software	from	scratch	is	also	expensive		

}  Patterns	are	a	form	of	reuse	of	software	design	



Definitions	and	names		
}  Alexander:	“A	pattern	is	a	recurring	solution		
to	a	standard	problem,	in	a	context.”	

}  Larman:	“In	OO	design,	a	pattern	is	a	named	
description	of	a	problem	and	solution	that	can	be	
applied	in	new	contexts;	ideally,		
a	pattern	advises	us	on	how	to	apply	the	solution		
in	varying	circumstances	and	considers		
the	forces	and	trade-offs.”	



Basic	Pattern	Principles	

Einführung	in	die	Softwaretechnik	8	

}  Patterns	are	never	invented;	they	are	found	
}  they	codify	existing	tried-and-true	knowledge,	idioms,	and	
principles	

}  the	more	honed	and	widely	used,	the	better	

}  Patterns	give	a	name	to	an	idea!	

Fred:		"Where	do	you	think	we	should	place	the	
responsibility	for	creating	a	SalesLineltem?	I	think	a	Factory."		
Wilma:	"By	Creator,	I	think	Sale	will	be	suitable."		
Fred:	"Oh,	right	-	I	agree."		



GRASP	
}  Name	chosen	to	suggest	the	importance	of	grasping	
fundamental	principles	to	successfully	design	object-
oriented	software	

}  Acronym	for	General	Responsibility		
Assignment	Software	Patterns	
}  (technically	“GRASP	Patterns”	is	hence		
redundant	but	it	sounds	better)	

}  Describe	fundamental	principles	of		
object	design	and	responsibility		

}  Expressed	as	patterns	



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



Information	Expert	

Einführung	in	die	Softwaretechnik	12	

}  Problem:		What	is	a	general	principle	of	assigning	
responsibilities	to	objects?		

}  Solution:		Assign	a	responsibility	to	the	information	
expert	
}  the	class	that	has	the	information	necessary	to	fulfill	the	
responsibility	

}  Start	assigning	responsibilities	by	clearly	stating	
responsibilities!	

}  For	instance,	in	a	POS	application	a	statement	might	be:	
“Who	should	be	responsible	for	knowing	the	grand	total	
of	a	sale"?		



Information	Expert	

Einführung	in	die	Softwaretechnik	13	

}  What	information	is	needed	to	determine	the	grand	
total?	

}  Sale	is	the	information	expert	for	this	responsibility.	



Information	Expert	

Einführung	in	die	Softwaretechnik	14	

}  What	information	is	needed	to	determine	the	line	item	
subtotal?	



Information	Expert	

Einführung	in	die	Softwaretechnik	15	

}  To	fulfill	the	responsibility	of	knowing	and	answering	its	
subtotal,	a		SalesLineltem	needs	to	know	the	product	
price.		

}  The	ProductSpecification	is	an	information	expert	on	
answering	its	price;	therefore,	a	message	must	be	sent	to	
it	asking	for	its	price.		



Information	Expert	

Einführung	in	die	Softwaretechnik	16	

}  To	fulfill	the	responsibility	of	knowing	and	answering	the	
sale's	total,	three	responsibilities	were	assigned	to	three	
design	classes	of	objects		



Information	Expert:	Final	Design	

Einführung	in	die	Softwaretechnik	17	



Information	Expert:	Discussion	

Einführung	in	die	Softwaretechnik	18	

}  Expert	usually	leads	to	designs	where	a	software	object	
does	those	operations		that	are	normally	done	to	the	
inanimate	real-world	thing	it	represents	
}  a	sale	does	not	tell	you	its	total;	it	is	an	inanimate	thing	

}  In	OO	design,	all	software	objects	are	"alive"	or	
"animated,"	and	they	can	take	on	responsibilities	and	do	
things.		

}  They	do	things	related	to	the	information	they	know.		



Information	Expert:	Discussion	

Einführung	in	die	Softwaretechnik	19	

}  Contraindication:	Conflict	with	separation	of	concerns	
}  Example:	Who	is	responsible	for	saving	a	sale	in	the	database?	
}  Adding	this	responsibility	to	Sale	would	distribute	database	
logic	over	many	classes	à	low	cohesion	

}  Contraindication:	Conflict	with	late	binding	
}  Late	binding	is	available	only	for	the	receiver	object	
}  But	maybe	the	variability	of	late	binding	is	needed	in	some	
method	argument	instead	

}  Example:	Support	for	multiple	serialization	strategies	



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



Creator	

21	

Problem:	 		
	Assign	responsibility	for	creating	a	new	instance	of	some	
class?	

Solution:	
	Determine	which	class	should	create	instances	of	a	class	
based	on	the	relationship	between	potential	creator	
classes	and	the	class	to	be	instantiated.	



Creator	

22	

}  who	has	responsibility	to	create	an	object?	
}  By	creator,	assign	class	B	responsibility	of	creating	instance	of	
class	A	if	
}  B	aggregates	A	objects	
}  B	contains	A	objects	
}  B	records	instances	of	A	objects	
}  B	closely	uses	A	objects	
}  B	has	the	initializing	data	for	creating	A	objects	

}  where	there	is	a	choice,	prefer	
}  B	aggregates	or	contains	A	objects	

	



Creator	:	Example	

23	

Who	is	responsible	for	creating	SalesLineItem	objects?	
Look	for	a	class	that	aggregates	or	contains	SalesLineItem	objects.		

Sale

date
time

Sales
LineItem

quantity

Product
Specification

description
price
UPC

Described-
by

*

Contain
s

1..*



Creator	:	Example	

24	

Creator	pattern	suggests	Sale.		
	
Collaboration	diagram	is		



Creator	

25	

}  Promotes	low	coupling	by	making	instances	of	a	class	
responsible	for	creating	objects	they	need	to	reference	

}  By	creating	the	objects	themselves,	they	avoid	being	
dependent	on	another	class	to	create	the	object	for	them	



Creator:	Discussion	

Einführung	in	die	Softwaretechnik	26	

}  Contraindications:		
}  creation	may	require	significant	complexity,	such	as		

}  using	recycled	instances	for	performance	reasons	
}  conditionally	creating	an	instance	from	one	of	a	family		of	similar	
classes	based	upon	some	external	property	value	

}  Sometimes	desired	to	outsource	object	wiring	(“dependency	
injection”)	

}  Related	patterns:	
}  Abstract	Factory,	Singleton,	Dependency	Injection	



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



Low	Coupling	

28	

Problem:	
		How	to	support	low	dependency,	low	change	impact,	
and	increased	reuse.	

	
Solution:	
		Assign	a	responsibility	so	that	coupling	remains	low.	



Why	High	Coupling	is	undesirable	

Einführung	in	die	Softwaretechnik	29	

}  Coupling	is	a	measure	of	how	strongly	one	element	is	
connected	to,	has	knowledge	of,	or	relies	on	other	
elements.		

}  An	element	with	low	(or	weak)	coupling	is	not	dependent	
on	too	many	other	elements	(classes,	subsystems,	…)	
}  	"too	many"	is	context-dependent	

}  A	class	with	high	(or	strong)	coupling	relies	on	many	
other	classes.		
}  Changes	in	related	classes	force	local	changes.		
}  Such	classes	are	harder	to	understand	in	isolation.		
}  They	are	harder	to	reuse	because	its	use	requires	the	
additional	presence	of	the	classes	on	which	it	is	dependent.		



Low	Coupling	

30	

How	can	we	make	classes	independent	of	other	classes?	
	
changes	are	localised	
easier	to	understand	
easier	to	reuse	
	
Who	has	responsibility	to	create	a	payment	and	associate	it	to	a	
sale?		



Low	Coupling	

31	

Two	possibilities:	

1.	Register	

2.	Sale	

Low	coupling	suggests	Sale	because	Sale	has	to	be	
coupled	to	Payment	anyway	(Sale	knows	its	total).	
	



Common	Forms	of	Coupling	in	OO	Languages	

32	

}  TypeX	has	an	attribute	(data	member	or	instance	variable)	
that	refers	to	a	TypeY	instance,	or	TypeY	itself.	

}  TypeX	has	a	method	which	references	an	instance	of	TypeY,	or	
TypeY	itself,	by	any	means.		
}  Typically	include	a	parameter	or	local	variable	of		type	TypeY,	or	the	

object	returned	from	a	message	being	an	instance	of	TypeY.	

}  TypeX	is	a	direct	or	indirect	subclass	of	TypeY.	
}  TypeY	is	an	interface,	and	TypeX	implements	that	interface.	



Low	Coupling:	Discussion	

Einführung	in	die	Softwaretechnik	33	

}  Low	Coupling	is	a	principle	to	keep	in	mind	during	all	
design	decisions	

}  It	is	an	underlying	goal	to	continually	consider.		
}  It	is	an	evaluative	principle		that	a	designer	applies	while	
evaluating	all	design	decisions.		

}  Low	Coupling	supports	the	design	of	classes	that	are	
more	independent	
}  reduces	the	impact	of	change.		

}  Can't	be	considered	in	isolation	from	other	patterns	such	
as	Expert	and	High	Cohesion	

}  Needs	to	be	included	as	one	of	several	design	principles	
that	influence	a	choice	in	assigning	a	responsibility.		



Low	Coupling:	Discussion	

Einführung	in	die	Softwaretechnik	34	

}  Subclassing	produces	a	particularly	problematic	form	of	
high	coupling	
}  Dependence	on	implementation	details	of	superclass	
}  “Fragile	Base	Class	Problem”	[see	SE	Design	Lecture]	

}  Extremely	low	coupling	may	lead	to	a	poor	design	
}  Few	incohesive,	bloated	classes	do	all	the	work;	all	other	
classes	are	just	data	containers	

}  Contraindications:	High	coupling	to	very	stable	elements	
is	usually	not	problematic	



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



High	Cohesion	

36	

Problem:	
	How	to	keep	complexity	manageable.	

Solution:	
	Assign	responsibilities	so	that	cohesion	remains	high.	

	
Cohesion	is	a	measure	of	how	strongly	related	and	focused		
the	responsibilities	of	an	element	are.		

	
An	element	with	highly	related	responsibilities,	and	which	
does	not	do	a	tremendous	amount	of	work,	has	high	
cohesion	



High	cohesion	

37	

}  Classes	are	easier	to	maintain		
}  Easier	to	understand	
}  Often	support	low	coupling	
}  Supports	reuse	because	of	fine	grained	responsibility	



High	Cohesion	

38	

Who	has	responsibility	to	create	a	payment?	

1.Register	

looks	OK	if	makePayement	considered	in	isolation,	but	
adding	more	system	operations,	Register	would	take	on	
more	and	more	responsibilities	and	become	less	cohesive.	

	



High	Cohesion	

39	

Giving	responsibility	to	Sale	supports	higher	cohesion	in	Register,	as	well	as		
low	coupling.		



High	Cohesion:	Discussion	

40	

}  Scenarios:	
}  Very	Low	Cohesion:	A	Class	is	solely	responsible	for	many	things	in	very	

different	functional	areas	
}  Low	Cohesion:	A	class	has	sole	responsibility	for	a	complex	task	in	one	

functional	area.		
}  High	Cohesion.	A	class	has	moderate	responsibilities	in	one	functional	area	

and	collaborates	with	classes	to	fulfil	tasks.		
}  Advantages:	

}  Classes	are	easier	to	maintain		
}  Easier	to	understand	
}  Often	support	low	coupling	
}  Supports	reuse	because	of	fine	grained	responsibility	

}  Rule	of	thumb:	a	class	with	high	cohesion	has	a	relatively	small	
number	of	methods,	with	highly	related	functionality,	and	does	not	
do	too	much	work.	



Problem:	High	Cohesion	and	Viewpoints	

Einführung	in	die	Softwaretechnik	41	 [Harrison&Ossher	‘93]	



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



Controller	

43	

Problem:	
	Who	should	be	responsible	for	handling	an	input	system	
event?	 		

Solution:	
	Assign	the	responsibility	for	receiving	or	handling	a	
system	event	message	to	a	class	representing	the	overall	
system,	device,	or	subsystem	(facade	controller)	or	a	use	
case	scenario	within	which	the	system	event	occurs	(use	
case	controller)	



Controller:	Example	

Einführung	in	die	Softwaretechnik	44	



Controller:	Example	

Einführung	in	die	Softwaretechnik	45	

}  By	the	Controller	pattern,	here	are	some	choices:		
}  Register,	POSSystem:	represents	the	overall	"system,"	
device,	or	subsystem		

}  ProcessSaleSession,	ProcessSaleHandler:	represents	a	
receiver	or	handler	of	all	system		events	of	a	use	case	
scenario	



Controller:	Discussion	

Einführung	in	die	Softwaretechnik	46	

}  Normally,	a	controller	should	delegate	to	other	objects	
the	work	that	needs	to	be	done;	it	coordinates	or	
controls	the	activity.	It	does	not	do	much	work	itself.	

}  Facade	controllers	are	suitable	when	there	are	not	"too	
many"	system	events	

}  A	use	case	controller	is	an	alternative	to	consider	when	
placing	the	responsibilities	in	a	facade	controller	leads	to	
designs	with	low	cohesion	or	high	coupling	
}  	typically	when	the	facade	controller	is	becoming	"bloated"	
with	excessive	responsibilities.	



Controller:	Discussion	

Einführung	in	die	Softwaretechnik	47	

}  Benefits	
}  Increased	potential	for	reuse,		and		pluggable	interfaces	

}  No	application	logic	in	the	GUI	

}  Dedicated	place	to	place	state	that	belongs	to	some	use	case	
}  E.g.	operations	must	be	performed	in	a	specific	order	

}  Avoid	bloated	controllers!	
}  E.g.	single	controller	for	the	whole	system,	low	cohesion,	lots	
of	state	in	controller	

}  Split	into	use	case	controllers,	if	applicable	

}  Interface	layer	does	not	handle	system	events	



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



Polymorphism	

49	

Problem:	
	How	to	handle	alternatives	based	on	types?	

				How	to	create	pluggable	software	components?	
Solution: 		
	When	alternate	behaviours	are	selected	based	on	the	
type	of	an	object,	use	polymorphic	method	call	to	select	
the	behaviour,	rather	than	using	if/case	statement	to	test	
the	type.	



Polymorphism:	Example	

Einführung	in	die	Softwaretechnik	50	



Polymorphism:	Discussion	

51	

}  Polymorphism	is	a	fundamental	principle	in	designing	
how	a	system	is	organized	to	handle	similar	variations.	

}  Properties:	
}  Easier	and	more	reliable	than	using	explicit	selection	logic	
}  Easier	to	add	additional	behaviors	later	on	
}  Increases	the	number	classes	in	a	design	
}  May	make	the	code	less	easy	to	follow	

}  Using	the	principle	excessively	for	“future-proofing”	
against	yet	unknown	potential	future	variations	is	a	bad	
idea	
}  Agile	methods	recommend	to	do	no	significant	“upfront	
design”	and	add	the	variation	point	only	when	the	need	arises	



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



Pure	Fabrication	

53	

Problem:	
Adding	some	responsibilities	to	domain	objects	
would	violate	high	cohesion/low	coupling/reuse	

Solution:		
Assign	a	highly	cohesive	set	of	responsibilities	to	an	
artificial	or	convenience	class	that	does	not	represent	
a	problem	domain	concept—something	made	up,	to		
support	high	cohesion,	low	coupling,	and	reuse.	



Pure	Fabrication:	Example	

54	

}  In	 the	 point	 of	 sale	 example	 support	 is	 needed	 to	 save	 Sale	
instances	in	a	relational	database.		

}  By	 Expert,	 there	 is	 some	 justification	 to	 assign	 this	
responsibility	to	Sale	class.	 

}  However,	 the	 task	 requires	 a	 relatively	 large	 number	 of	
supporting	 database-oriented	 operations	 and	 the	 Sale	 class	
becomes	incohesive. 

}  The	 sale	 class	 has	 to	 be	 coupled	 to	 the	 relational	 database	
increasing	its	coupling. 

}  Saving	 objects	 in	 a	 relational	 database	 is	 a	 very	 general	 task	
for	 which	 many	 classes	 need	 support.	 Placing	 these	
responsibilities	 in	 the	Sale	class	 suggests	 there	 is	going	 to	be	
poor	 reuse	or	 lots	of	duplication	 in	other	classes	 that	do	 the	
same	thing.		 

	 
	



Pure	Fabrication	:	Example	

55	

}  Solution:	create	a	new	class	that	is	solely	responsible	for	
saving	objects	in	a	persistent	storage	medium	

}  This	class	is	a	Pure	Fabrication	

}  The	Sale	remains	well-designed,	with	high	cohesion	and	low	
coupling	

}  The	PersistentStorageBroker	class	is	itself	relatively	cohesive	
}  The	PersistentStorageBroker	class	is	a	very	generic	and	reusable		

	object	



Pure	Fabrication:	Discussion	

56	

}  The	design	of	objects	can	be	broadly	divided	into	two	
groups:	
}  Those	chosen	by	representational	decomposition	(e.g.	Sale)	
}  Those	chosen	by	behavioral	decomposition	(e.g.	an	algorithm	
object	such	as	TOCGenerator	or	PersistentStorage)	

}  Both	choices	are	valid	designs,	although	the	second	one	
corresponds	less	well	to	the	modeling	perspective	on	
objects	

}  If	overused,	it	can	lead	to	a	non-idiomatic	design,	namely	
a	separation	of	the	code	into	data	and	behavior	as	in	
procedural	programming	
}  Coupling	of	data	and	behavior	is	central	to	OO	design	



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



Indirection	

58	

Problem:	
	Where	to	assign	a	responsibility,	to	avoid	direct	coupling	
between	two	(or	more)	things?		
How	to	de-couple	objects	so	that	low	coupling	is	supported	
and	reuse	potential	remains	higher?		

	
Solution: 		
	Assign	the	responsibility	to	an	intermediate	object	to	mediate	
between	other	components	or	services,	so	that	they	are	not	
directly	coupled.		

	
"Most	problems	in	computer	science	can	be	solved		

by	another	level	of	indirection"	



Indirection:	Example	

Einführung	in	die	Softwaretechnik	59	

By	adding	a	level	of	indirection	and	adding	polymorphism,	the	adapter	objects	
protect	the	inner	design	against	variations	in	the	external	interfaces		



Nine	GRASP	patterns:	
}  Information	Expert	
}  Creator		
}  Low	Coupling	
}  Controller	
}  High	Cohesion	
}  Polymorphism	
}  Indirection	
}  Pure	Fabrication	
}  Protected	Variations	



Protected	Variation	

Einführung	in	die	Softwaretechnik	61	

Problem:		
How	to	design	objects,	subsystems,	and	systems	so	that	the	
variations	or	instability	in	these	elements	does	not	have	an	
undesirable	impact	on	other	elements?	
	
Solution:	
Identify	points	of	predicted	variation	or		instability;	assign	
responsibilities	to	create	a	stable	interface	around	them.	
	
Note:	This	is	basically	just	another	formulation	of	the	
information	hiding	principle.	



Protected	Variation:	Examples	

Einführung	in	die	Softwaretechnik	62	

}  Data	encapsulation,	interfaces,	polymorphism,	
indirection,	and	standards	are	motivated	by	PV.		

}  Virtual	machines	are	complex	examples	of	indirection	to	
achieve	PV	

}  Service	lookup:	Clients	are	protected	from	variations	in	
the	location	of	services,	using	the	stable	interface	of	the	
lookup	service.		

}  Uniform	Access	Principle	
}  Law	of	Demeter	
}  …	



Literature	

Einführung	in	die	Softwaretechnik	63	

}  Craig	Larman,	Applying	UML	and	Patterns,	Prentice	Hall,	
2004		
}  Chapter	16+17+22	introduce	GRASP	


