
Bachelor Thesis

Bidirectional Grammar

Transformations

Simon Wegendt

Supervisors:
Yufei Cai
Prof. Dr. Klaus Ostermann

October 21, 2015

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Goal . 3

2 Background information on grammars 3
2.1 Theory . 4
2.2 Kleene-operator . 4
2.3 Languages . 4

2.3.1 Languages produced from grammars 4
2.4 Syntax trees . 4
2.5 Context free grammars . 5

2.5.1 .grammar-�le speci�cation 5

3 The DSL 6
3.1 Grammar transformation . 7
3.2 Syntax tree transformation . 10

3.2.1 Sample transformation . 12
3.3 Transformer-instructions �le . 16

4 Inner workings 16
4.1 .tr to syntax tree transformations 16
4.2 Di�erent atomic and composite types 17
4.3 Applying a transformer block . 18

4.3.1 Matching rules . 18
4.3.2 Producing rules . 18

4.4 Pattern synonyms . 18
4.4.1 Instantiating pattern synonym prototypes 18
4.4.2 Automatic generation . 19

4.5 Prolog . 19
4.5.1 Pattern synonyms to Prolog de�nitions 19
4.5.2 Loading de�nitions . 20
4.5.3 Syntax tree translation . 21

5 Discussion 21
5.1 Time complexity . 21
5.2 Problems . 21

6 Case studies 22
6.1 Eliminating left-recursion . 22

6.1.1 Grammar . 22
6.1.2 Transformed grammar . 23
6.1.3 Sample transformation . 25
6.1.4 More complex grammars 26

6.2 Left-factoring, inlining and Chomsky-two-form 26
6.2.1 Grammar . 27
6.2.2 Transformer . 27
6.2.3 Sample transformation . 29

6.3 Left-factoring . 30
6.3.1 Grammar . 30

1

6.3.2 Transformed grammar . 30
6.3.3 Transformer . 30
6.3.4 Sample transformation . 31

6.4 Inlining . 31
6.4.1 Grammar . 31
6.4.2 Transformed grammar . 31
6.4.3 Transformer . 32
6.4.4 Sample transformation . 32

7 Related works 33
7.1 Generating attribute grammar-based bidirectional transforma-

tions from rewrite rules . 33
7.2 XSLT . 33
7.3 biXid: a bidirectional transformation language for XML 34

8 Conclusion 34

2

1 Introduction

1.1 Motivation

In many languages it's easy to write a certain kind of parser while others may be
less intuitive: In functional languages writing a recursive descent parser is easy
while designing a bottom-up parser is more complex all around. A recursive
descent parser can't handle left-recursive grammars though. The CYK-parsing
algorithm only works on grammars in CNF (chomsky normal form) or similar
two-forms [1] and, while every context-free grammar can be transformed to a
CNF-grammar which produces the same words, the syntax tree produced by
parsing the words di�ers a lot from the ones of the original grammar. Since
syntax trees are often more important than the actual words, as the trees often
recursively give meaning to their word, this is a serious problem.
Also often you'd like to have a grammar employing many features while dealing
with a more simple syntax tree after parsing; for example you might like to
enable both of these types of variable declarations while only dealing with one
of them in your syntax tree:

int (a, b) = (0, 1);

int c = 0, d = 1;

Moreover, many textbooks describe grammar transformations like CNF or left
recursion elimination. Implementing these is somewhat complicated and it
would be nice to be able to reuse some kind of standard de�nition for them,
also the resulting syntax tree of the starting and the transformed grammar will
di�er. Therefore �nding a more concise, correct way to describe grammar trans-
formations would be nice.
For all of these problems we'll try to �nd a solution.

1.2 Goal

The Goal of this thesis is to

• describe transformations between context free grammars using a DSL
("Domain-speci�c language")

• apply such transformations

• describe or infer forwards and backwards transformations between the
corresponding syntax trees

In this thesis, the transformation between grammars is done using a pattern
matching approach matching single grammar rules exhaustively, building a table
holding the match information, and constructing rules using the same patterns.
Syntax tree transformations can be inferred in some cases, while in others they
have to be written done more or less explicitly (although still prototyped, so
they will be instantiated on a per-grammar base).

2 Background information on grammars

This section will brie�y establish a common ground on what grammars etc. are.

3

2.1 Theory

A grammar G is a tuple
G = (N,Σ, P, S)

where

N is a �nite set of NTs(nonterminals)

Σ is a �nite set of terminals, Σ being disjoint from N

P is a �nite set of production rules, each rule of the form

(Σ ∪N)∗N(Σ ∪N)∗ → (Σ ∪N)∗

S ∈ N is the start symbol of the grammar

2.2 Kleene-operator

Given a set M , M∗ is de�ned as all concatenations of any number (even none)
of all elements of M . A more formal de�nition of this could be

M∗ =

∞⋃
n=0

Mn

In language terms, these tuples are often written without the syntactical sugar,
for example to represent a number like 1523 over the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
you could use the tuple (1, 5, 2, 3) ∈ Σ4 ⊆ Σ∗. Since the tuple representation is
not very readable, we'll write 1523 in most cases instead. The empty tuple is
often written as ε or λ.

2.3 Languages

A language is a subset of all words over an alphabet Σ.
Examples: Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

- N is equal to Σ∗

- The set of all binary coded numbers is a subset of Σ∗

2.3.1 Languages produced from grammars

Grammars can be used to de�ne a language. Given a grammar G = (N,Σ, P, S),
the set of all it's words L(G) can be described as all words w in Σ∗ where a
sequence of derivations exists, such that S =⇒ ∗

Gw.

2.4 Syntax trees

Syntax trees describe how words are formed from grammars. The parent node
always contains the left hand side of a production rule, it's children nodes joined
together are the corresponding right hand side.
The root node is the start symbol, the leafs form the produced word.

4

2.5 Context free grammars

Context free grammars are grammars with production rules being limited to
only one symbol on the left hand side, therefore every rule has to look like

N → (Σ ∪N)∗

Context free grammars are much easier handled than those without this limita-
tion, while still being powerful enough to describe the majority of a programming
language and most other needed stu� like braced terms etc.

2.5.1 .grammar-�le speci�cation

To specify grammars for our program we use custom, simple .grammar-�les.
Here's an example to start:

1 start C
2 C −> C_1 S "+" C | C_2 S
3 S −> S_3 F "∗" S | S_4 F
4 F −> F_5 "(" C ")" | F_6 <int>

We'll be using this grammar quite often since it describes arithmetic expressions
without using left-recursion and with automatic precedence of "*" over "+".
In general, given a context-free grammar G = (N,Σ, P, S), it is encoded like
this:
The starting symbol S ist to be placed on the �rst line after the keyword start,
for example start S.
Each rule in P is encoded as follows: We �rst assign each rule a unique name,
allowing us to not only parse, but track exactly which rule was used in parsing
and building the syntax tree. We call the rule's type together with it's name
its constructor, since, when parsing, it constructs a tree; similar to a data con-
structor in Haskell. Then rules are encoded like this:
Nonterminal -> Rulename Atoms

where
• Nonterminal is any alphanumeric sequence beginning with an uppercase
letter - this represents the rule type

• Rulename is the same nonterminal followed by an underscore and a unique
name

• Atoms are one or more Nonterminals or Terminals

• a Terminal is any string enclosed by double quotation marks, or a special
numeric terminal for convenience: <int> or <float>.

As a shortcut to writing multiple rules with the same type you can write the
following:
Nonterminal -> Rulename Atoms | ... | Rulename Atoms

You may freely use whitespace in most places, this includes linebreaks be-
fore |. You may also comment your grammar with C-style line comments, i.e.
//comment.
Both the sets N and Σ are de�ned implicitly.

5

3 The DSL

This section will describe how to specify transformations on grammars and
syntax trees. We'll �rst look at how to come up with the patterns for matching
and producing grammar rules, and later look at transforming the syntax trees
belonging to the grammars. For this, we'll we'll look at the concrete.grammar
and it's syntax trees:

1 start C
2 C −> C_1 S "+" C | C_2 S
3 S −> S_3 F "∗" S | S_4 F
4 F −> F_5 "(" C ")" | F_6 <int>

C stands for �concrete�, S for summand, F for factor. The grammar is �con-
crete� in the sense that it tells you what each subterm is by its type. It also
de�nes a precedence overridable with braces: in the corresponding syntax tree
of an arithmetic expression produced by this grammar, evaluating a branch by
evaluating each child �rst, replacing the children by their value and then eval-
uating the branch itself corresponds to the standard evaluation order of the
expression itself. The syntax tree of "1 + 2 ∗ 3" for example is:

C1

C2

S3

S4

F6

3

*F6

2

+S4

F6

1

For most purposes, after parsing we no longer care about the type of the nodes
themselves, the tree's shape gives us enough information to evaluate the ex-
pression. Therefore it would be enough to have some equivalent syntax tree
produced by the following grammar:

1 A −> A_1 A "+" A
2 | A_3 A "∗" A
3 | A_6 <int>

The corresponding abstract syntax tree of "1 + 2 ∗ 3" with ∗ having precedence
over + is:

6

A1

A3

F6

3

*F6

2

+F6

1

The abstract grammar, which only loosely describes how arithmetic expressions
are formed, does not de�ne a precedence: it's represented by the tree. The
concrete grammar is non-ambiguous though: it de�nes a precedence and allows
braces to break it. Transforming the tree forwards and backwards not only keeps
this precedence, it eliminates (or adds) unneeded braces. All versions of valid
backtransformed trees are obtainable; for convenience the least deep, shortest
unparsed is choosen for printing. The forward transformation only produces
one tree.
We want all nodes to have the same type, A (for �abstract�). We'd like to
eliminate chains of just As as well.

3.1 Grammar transformation

To describe grammar transformations we're using a pattern matching approach.
This means that the DSL describes input patterns to match on rules and output
patterns to produce new rules. We'll �rst go through the thougt process of
creating those patterns and some other declarations, and later put them together
into a complete object.
To match the all rules

1 C −> C_1 S "+" C | C_2 S
2 S −> S_3 F "∗" S | S_4 F

we can use the following matcher:

1 Y −> Y_1 Z x Y | Y_2 Z

When matching the �rst two rules, we'll get the following mapping of Matcher-
Atoms to GrammarAtoms:

Y → S, Z → C, x→ ” + ”

while matching the second two rules, we'll get a similar mapping:

Y → F, Z → S, x→ ” ∗ ”

Since we want to always get the same symbol, we'll �rst have to map a Nonter-
minalMatcher to it, which is done using the following declaration:

1 W= A

Then to produce the �rst two abstract grammar's rules, we use the following
producer:

1 W −> W_1 W x W

7

With the information from matching and our declaration, this produces the
following rule after matching the �rst two concrete rules:

1 A −> A_1 A "+" A

So what is most important about this part of the matching is the information
mapped by x and the form of the matched rule. Note, that Y −>Y_1 Z x Y
does not match S −> S_1 F "∗"S, since x only matches terminals, while Y/ Z
only matches nonterminals (and that's what we want). To keep the last rule,
we use the following matcher and producer:

1 in
2 S −> S_1 x B y | S_2 z : 1
3 out
4 W −> W_2 z : 1

The structured format containing all this information then looks like this:

1 start A
2 begin
3 W= A
4 begin
5 W_1 = c o l l a p s e W C_1
6 in
7 Y −> Y_1 Z x Y | Y_2 Z
8 seq
9 W −> W_1 W x W

10 pattern auto
11 C_2 x = (x : : W)
12 end
13 begin
14 in
15 S −> S_1 x B y | S_2 z : 1
16 out
17 W −> W_2 z : 1
18 pattern auto
19 S_1 x (y : : B) z = (y : : W)
20 end
21 end

Let's go through it part by part:

Line 1: The �rst line speci�es the starting symbol for the produced grammar, so
the produced grammar will have the nonterminal A as it's starting symbol.

Lines 2 and 21: begin...end speci�es the begining and and end of a block. A block is
applied exhaustively to the input grammar, matching grammar rules and
producing new ones. All de�nitions/bindings/... of a block are scoped
and can be overriden by subblocks.

Line 3: Here's the assignmentW = A. In detail it means: assign the NonterminalMatcher
W the nonterminal A. This is a constant �A� and not one resolved by
matching etc.

8

Line 5: W_1 is a rule name. Here it get's bound to the result of the collapse-
function, which evaluates:

� the NonterminalMatcher W

� the rule name assignment C_1

� takes the matched nonterminal from the �rst step and replaces the
nonterminal retrieved from the second step by it

For example, if W matched Abs and C_1 matched Con_sum, W_1 will
be bound to Abs_sum.
It's not needed in our example, since the program tries to guess what name
to give unknown rules, but if you want to be sure of the mapped name
you can use this function to transfer names to new rules.

Lines 6-11: in ... out/seq (... pattern (auto)(force)) is a block of matchers, pro-
ducers, and patterns.

Lines 15 and 17: Here's our matchers and producers. They will match a grammar rule of
the same length, atom by atom.

Line 11: patterns are used to specify complex transformations. This will be dis-
cussed in detail later.

In general, the �le is de�ned as follows:
The matcher- and producer-patterns look similar to rules in the .grammar-�les:
TypeVariable -> RuleName MatcherAtoms

where again
• TypeVariable is any alphanumeric sequence beginning with an uppercase
letter

• RuleName is the same type variable followed by an underscore and a
unique name. Both can be of arbitrary length but must not contain
whitespace. Since the type variable is a nonterminal, it must start with
an uppercase letter.

• MatcherAtoms are one or more

� NonterminalMatchers, an uper-case letter followed by any alphanu-
meric (e.g. A, Ka, Ze1Z like nonterminals). They match nontermi-
nals.

� AnyMatchers, an underscore followed by a nonterminal-like (e.g. _A,
_Ka, _Ze1Z). They match any grammar atom.

� TerminalMatchers, like NonterminalMatchers, only starting with a
lower-case letter (e.g. a, kA, ze1Z). They match any terminal.

� LiteralMatchers, any string enclosed by double quotation marks, or
a special numeric terminal for convenience: <int> or <�oat>. They
match only their exact grammar counter-parts.

To de�ne a matcher/producer-pair, we enclose it with begin and end and pre�x
the matchers with in, the producers with out.
At the start of a begin-block you can declare some things:
• NonterminalMatcher =Nonterminal �xes a nonterminal matcher to the
speci�ed nonterminal, which means that in this scope the nonterminal
matcher will only match the speci�ed nonterminal.

9

• Rulename =function arguments �xes NTMs or rule name associations
whenever the block is run. function is a speci�cally de�ned function oper-
ating on the arguments. Some are prede�ned, although you can add your
own quite easily.

� A_1 =collapse A B_1 will for all matched rule names Bi → Cj and
the association A → D associate Ai → Dj , so if B1 matched some
rule named K2 and A matched the nonterminal U , A1 will match U2.

� A =newName default or A_1 =newRuleName default will associate
the speci�ed matchers with an unused NT or rule name.

• NonterminalMatcher will try to associate a NTM to every NT in the input
grammar, but not generate it.

3.2 Syntax tree transformation

To describe how to transform syntax trees we use pattern synonyms. Pattern
synonyms describe how (sub-)trees relate to each other. Again we use the con-
crete and abstract grammar as an example. The pattern synonyms for trans-
forming between them would look like this (with the concrete grammar on the
left side and the abstract grammar on the right):

1 C_1 x p y = A_1 x p y
2 C_2 x = (x : : A)
3 S_3 x m y = A_3 x m y
4 S_4 x = (x : : A)
5 F_5 l x r = (x : : A)
6 F_6 x = A_6 x

The patterns C1 . . . and S3 . . . are simple: when we encounter a tree constructed
by C1/S3 we copy the information inside into a tree of type A1/A3. It corre-
sponds to the following subtree equivalence:

C1/S3

ypx

=

A1/A3

ypx

The lowercase letters in these are variables which will hold some kind of subtree.
The patterns C2 . . . and S4 . . . are a bit more complicated: they state that, when
encountering a tree constructed by C2/S4, we take it's children and see how we
can transform it to a tree of type A matching on this children. We could also
write the �rst one explicitly like this:

1 C_2 (S_3 x m y) = A_3 x m y
2 C_2 (S_4 (F_6 x)) = A_6 x
3 C_2 (S_4 (F_5 (C_1 x p y))) = A_1 x p y
4 C_2 (S_4 (F_5 (C_2 (S_3 x m y)))) = A_3 x m y
5 . . .

However, we would only be able to specify transformations with a �xed amount
of depth. Therefore, the pattern C_2 x =x :: A is needed.
Since we know that trees are �nite, this �implicit�-style will terminate, but work
without any depth restriction.
As you can see, patterns may nest like this to access subtrees:

10

A_1 (B_2 a)b c =...
These patterns can be directly written in the DSL: after declaring the output
patterns, write pattern followed by your patterns. For more complicated ex-
amples see the case studies.
Using all of this, we get the following transformer-�le:

1 start A
2 begin
3 W= A
4 begin
5 W_1 = c o l l a p s e W C_1
6 in
7 Y −> Y_1 Z x Y | Y_2 Z
8 out
9 W −> W_1 W x W

10 pattern
11 Y_1 x p y = W_1 x p y
12 Y_2 x = (x : : W)
13 end
14 begin
15 in
16 S −> S_1 x B y | S_2 z
17 out
18 W −> W_2 z
19 pattern
20 S_1 x y z = (y : : W)
21 S_2 x = W_2 x
22 end
23 end

The �rst begin/end-block will match the rules C1 to S4, binding Y to C or S
etc. and producing all four pattern synonyms. The second block will match the
rules F5 and F6, producing the last two patterns.
Pattern can be inferred as well: By specifying how information �ows between the
syntax trees, pattern can be inferred. To do this you can follow a matcher atom
with :ID, for example W:1. The :ID may be any character sequence without
whitespace. Then follow the keyword pattern with auto. In the example, this
will look like this:

1 start A
2 begin
3 W= A
4 begin
5 W_1 = c o l l a p s e W C_1
6 in
7 Y −> Y_1 Z:1 x :2 Y:3 | Y_2 Z
8 out
9 W −> W_1 W:1 x :2 W:3

10 pattern auto
11 Y_2 x = (x : : W)
12 end

11

13 begin
14 in
15 S −> S_1 x B y | S_2 z : 1
16 out
17 W −> W_2 z : 1
18 pattern auto
19 S_1 x y z = (y : : W)
20 end
21 end

The now missing pattern synonyms are inferred from the information �ow. the
recursing patterns still have to be written by hand since, as mentioned before,
to write down the information �ow you would have to write in�nitely many
recursions to cover all depths. For accessing even more complicated parts of the
syntax tree, see the next case study.
If the information �ow is somewhat linear, you can write seq instead of out.
This will sequentially number all non-assigned matchers; therefore you can spec-
ify the odd ones yourself and let the rest be done automatically. In the example,
this can be used in the �rst matcher/producer block, since all information �ow
is sequentially. Note that Y_2 Z will be numbered as well to Y_2 Z:4, however
this does not matter since the information in 4 can't �ow to anywhere and so
won't produce any pattern. The �nal �le looks like this:

1 start A
2 begin
3 W= A
4 begin
5 W_1 = c o l l a p s e W C_1
6 in
7 Y −> Y_1 Z x Y | Y_2 Z
8 seq
9 W −> W_1 W x W

10 pattern auto
11 Y_2 x = (x : : W)
12 end
13 begin
14 in
15 S −> S_1 x B y | S_2 z : 1
16 out
17 W −> W_2 z : 1
18 pattern auto
19 S_1 x y z = (y : : W)
20 end
21 end

3.2.1 Sample transformation

Let's look at an actual conversion. We parse 2*[4+[3+[22*[11+[2*[3+4]]]]]]
using the concrete grammar and get:

12

C2

S3

S4

F5

']'C1

C2

S4

F5

']'C1

C2

S4

F5

']'C2

S3

S4

F5

']'C1

C2

S4

F5

']'C2

S3

S4

F5

']'C1

C2

S4

F6

4

'+'S4

F6

3

'['

'*'F6

2

'['

'+'S4

F6

11

'['

'*'F6

22

'['

'+'S4

F6

3

'['

'+'S4

F6

4

'['

'*'F6

2

After the automatic transformation we get the following syntax tree belonging
to the abstract grammar:

13

A3

A1

A1

A3

A1

A3

A1

A6

4

'+'A6

3

'*'A6

2

'+'A6

11

'*'A6

22

'+'A6

3

'+'A6

4

'*'A6

2

A backwards transformation is also possible and generated. We get the follow-
ing tree:

14

C2

S3

S4

F5

']'C1

C1

C2

S3

S4

F5

']'C1

C2

S3

S4

F5

']'C1

C2

S4

F6

4

'+'S4

F6

3

'['

'*'F6

2

'+'S4

F6

11

'['

'*'F6

22

'+'S4

F6

3

'+'S4

F6

4

'['

'*'F6

2

The abstract grammar is ambiguous while the concrete grammar is non-ambiguous.

15

Transforming the tree forwards and backwards keeps the precedence of the con-
crete grammar and it eliminates (or adds) unneeded braces. Obviously there's
in�nitely many possible ways to insert braces in the tree and All versions of valid
backtransformed trees are obtainable; for convenience the least deep, shortest
unparsed is choosen for printing. In our case this means that tranforming for-
wards and backwards eliminates unnecessary braces. The forward transforma-
tion only produces one tree (in this case study).

3.3 Transformer-instructions �le

To easily use the program, there is the so-called transformer-instructions �le.
With it, you can specify
• what grammar to load using "FileName.grammar". This has to be the
�rst instruction of the �le.

• what transformations to apply using trans("FileName.tr") or exhst("FileName.tr").
The �rst applies the transformer �le once, the second one applies ist ex-
haustively, i.e. until nothing changes by applying it again.

• what to parse and with which grammar: gTran("expr") parses using the
transformed grammar and then transforms the syntax tree back to one of
the original grammar, gOrig("expr") does the opposite.

• to save the transformed grammar using writeGrammar("FileName.grammar").
You can chain these commands to save intermediate results or apply multiple
transformations. Applying two transformations after another chains them, so
the resulting grammar will be

g1 → t2(t1(g1))

4 Inner workings

In this section I'll discuss how the algorithm implemented executes transforma-
tions.

4.1 .tr to syntax tree transformations

The transformation process consists of the following steps:
1. Matching grammar rules:

(a) Compare atom by atom

(b) Keep track of new matches in three di�erent tables:

i. The SymbolTable keeps track of exact matches, i.e. Matcher-
Atom S matches GrammarAtom A or "xyz"

ii. The RuleNameTable keeps track of which rule-matcher matches
which grammar rule

iii. The NameTable keeps track only what the matched rules' names
were

2. Producing grammar rules:

16

(a) for each matched block of rules, produce grammar rules atom by
atom, looking up MatcherAtoms in the SymbolTable and guess them
if not yet existing

3. From pattern-synonym prototypes and information �ow, produce pattern-
synonyms

4. Translate pattern-synonyms to Prolog-de�nitions

4.2 Di�erent atomic and composite types

• GrammarAtoms are used to represent the right side of grammar rules.
There are the following subatoms:

� Nonterminals

� TerminalLike: Terminals ("abc"), Regexs ("[0-9a-z]".r), IntegerTerminals
and FloatTerminals (<int>/ <�oat>)

� GrammarAtomSequence: used to capture matched ...s, can be used
in parsing.

• TransformerAtoms are used to represent everything on the right side of
matcher and production rules. There's the following subatoms:

� AnyMatcher matches any GrammarAtom

� NonterminalMatcher, TerminalMatcher match anything of their re-
spective type

� LiteralMatcher matches all Terminals with the exact same string

� IntegerMatcher and FloatMatcher match IntegerTerminals and FloatTerminal
s

� RestMatcher is used to associate with a GrammarAtomSequence. It
is used before matching atom by atom.

• PatternAtoms make up the contents of both sides of a pattern-synonym:

� PatternLiterals, PatternTerminals, PatternIntegers and PatternFloat
s are analogous to TransformerAtoms.

� TypedPatternVariables correspond to Nonterminals and NonterminalMatcher
s. After instantiating they are what determines di�erent type errors.

� PatternAtomPrototypes are generated by the parser when parsing
.tr-�les. They later get instantiated to all other pattern atoms after
rules have been matched and produced.

� ExtractorPattern is a special atom generated by the parser to rep-
resent a "loosely typed" pattern side, i.e. the left hand side in (
x :: S) =R_1 t x. They are modi�ed slightly when instantiating
PatternAtomPrototypes.

� TypedPattern holds a sequence of PatternAtoms. It is a PatternAtom
itself to model pattern synonyms like S_1 (S1_1 x y)t z =S1_1 x
(S_1 y t z).

17

4.3 Applying a transformer block

To apply a transformer block, that is a set of in and out rules and pattern
synonym prototypes, we have to do the following:

• Match every in-rule to a grammar-rule. For this, we select every subset of
the same size out of the grammar's rules and try matching rule-by-rule,
atom-by-atom. This aproach was choosen since we wouldn't know if the
�rst successful match was the one intended if we'd stop after it.

• For every match found this way we get a symbol table, rule-name-table
and a name table. With each of these three, we produce a grammar-rule
for every out-rule.

This all is done in applyRule.
It get's called by applyMatcherAndTransformer, which then

• collects these rules and patterns

• calls producePatternSynonyms, which does automatic pattern generation

• instantiates pattern-synonym-prototypes

• translates pattern-synonyms to Prolog de�nitions

4.3.1 Matching rules

Matching one grammar rule to a matcher is done in matches. After putting
everything from a grammar rule longer than a matcher inside a rest matcher
(if available), it goes through every pair of grammar and matcher atoms and
checks the symbol table, if it should continue:

• If the matcher atom is already in the symbol table, continue if the corre-
sponding grammar atom is the same

• If the matcher atom is not found in the symbol table, add the pair of
atoms to it and continue

• Otherwise matching fails in this run
After matching all atoms, it returns the gathered information: the modi�ed sym-
bol table. The symbol table also holds the restMatcher/GrammarAtomSequence
match.

4.3.2 Producing rules

Producing a grammar rule is simpler than matching one: Go through all matcher
atoms and in most cases the symbol table already tells us everything we need to
know or we just need to take literal information out of a matcher. Only when
a new nonterminal is introduced we have to be creative. For this, there is a Set
of used symbols, which we check before adding a new nonterminal.

4.4 Pattern synonyms

4.4.1 Instantiating pattern synonym prototypes

Instantiating the pattern synonyms basically means recursively going through
them and replacing all matcher types with the mapped grammar types according
to the symbol table. This is done by �nalizePattern .

18

4.4.2 Automatic generation

Patterns can be automatically inferred from information �ow, this is handled
by producePatternSynonyms. To do this it basically tries to infer some order
of derivation of grammar rules, so that every part of information is present on
both sides. Example:

1 in
2 C −> C_1 S:1 x :2 C:3
3 out
4 A −> A_1 A:1 B
5 B −> B_1 x:2 A:3
6 | B_2 x :2

This will expand into the following pattern synonyms one after another (and
some others, which fail):

1 C_1 s x c = A_1 s ?
2 C_1 s x c = A_1 s (B_1 x c)

The question mark here denotes a variable with no associated information �ow.
The following expansion also happens but fails, since the variable c is not re-
solved:

1 C_1 s x c = A_1 s ?
2 C_1 s x c = A_1 s (B_2 x)

4.5 Prolog

Prolog handles the syntax tree transformation. To talk to Prolog, there's a
supplied interface between Prolog and Java, and since Scala compiles to the
JVM, we can use it. However it behaves strangely in some cases, which stops
us from getting di�erent transformed trees as a stream and other nice-to-have
features.
The transformation is done as follows:

• load the previously from pattern synonyms translated de�nitions

• translate the syntax tree

• query Prolog

• translate the answer(s)

4.5.1 Pattern synonyms to Prolog de�nitions

Every pattern corresponds to some Prolog de�nition like

1 relT1toT2 (cA_1(Vc1 , Vc2 , . . .) , cA_2 (. . .)) :−
2 r e lS1toS2 (. . .) ,
3 . . .

We'll go through the process of translation for three synonyms to show di�er-
ent type errors. Type errors tell us when Prolog needs to descend into a relation.

Straight translation
Pattern synonym:

19

1 S_2 (x : : F) = A_1 (x : : F) (R_2 "")

This �rst pattern describes the relation between S2 and A1: rename the node,
put an empty string in the new leaf. The type of the �rst leaf stays the same,
therefore the corresponding Prolog de�nition is simple:

1 re lStoA (cS_2(VxF) , cA_1(VxF, cR_2(' '))) .

In Prolog relations always start with a lowercase letter, variables always start
with an uppercase one. The algorithm denotes relations between types S and
T like relStoT, constructors (=rule names) like cNT_Name and variables like
Vin�owTYPE. Strings in Prolog are delimited by single quotes.

Type error between variables
Pattern synonym:

1 (x : : S) = R_1 "+" (x : : A)

As you can see, the variable x is not of the same type on the left and right hand
side. We therefore have to tell Prolog, that it should try to relate between them
by adding a constraint on this variable:

1 re lStoR (VxS , cR_1('+' , VxA)) :−
2 re lStoA (VxS , VxA) .

Type error because of missing constructor
Pattern synonym:

1 S_1 (A_1 (x : : F) (y : : R)) "+" (z : : F)
2 = A_1 (x : : F) (S_1 (y : : S) "+" (z : : F))

In this pattern synonym the constructor for A1 occurs on the left hand side,
even though A is a nonterminal of the right hand side's grammar. We therefore
have to translate the content of the �rst leaf of S1, which is of type R, to the
type A. The same holds for the right side. Additionally, we encounter a type
error on y. Both of these resolved yield the following Prolog code:

1 re lStoA (cS_1(RA_1, '+' , VzF) , cA_1(VxF, RS_1)) :−
2 re lStoR (VyS , VyR) ,
3 re lStoA (RA_1, cA_1(VxF, VyR)) ,
4 re lStoR (cS_1(VyS , '+' , VzF) , RS_1) .

4.5.2 Loading de�nitions

The object PrologInterface comes with a method transformGrammarWithFile,
which takes a grammar and the path to a �le containing a transformer object.
It returns the transformed grammar and two methods to convert between the
grammars. These methods hold the de�nitions generated like above and on
call load the de�nitions and translate the trees like below. To load the de�-
nitions, the methods write them to a temporary �le that is loaded and, after
transformation, is unloaded and deleted again.

20

4.5.3 Syntax tree translation

Syntax trees relate to Prolog terms quite easily:

• Branches correspond to Compounds with a constructor like cNT_Name.
The subbranches correspond to the Compound's content and are trans-
lated recursively.

• LeafStrings correspond to Atoms

• LeafIntegers and LeafFloats correspond to their respective Prolog equiva-
lents Integer and Float

After transformation, Prolog returns a Term and a Map from String to Term
which resolves variables. The backwards translation is therefore equally easy
and contains only a bit of string magic.

5 Discussion

5.1 Time complexity

If you've read the above carefully, you'll notice it says a lot of things like "every
subset", you might worry about exponential running time. While this is true,
it's not relevant at this stage, since:

• Grammars and transformers are relatively small compared to the gram-
mars' syntax trees

• Grammars are transformed once, then multiple trees are transformed (usu-
ally)

• Prolog is way slower, since it explores all transformation paths with the
same diligence as we explore all matches

So yes, runtime is exponential in the size of the grammar and the size of the
transformer blocks, but no, it's not that bad, since there is another part in this
which is the bigger performance sink. Some speedup in that area therefore would
be nice, either in another aproach than the Prolog one or in some guidelines for
Prolog how to explore the relations. However this is not part of this thesis'
objective.

5.2 Problems

In the .tr-�le, the �rst line hard-codes the transformed grammar's start symbol.
This is unconvenient, but a neccessary evil at this point. We'd like to specify
the start symbol depending on the input grammar, speci�cally when matching
and producing rules. However when speci�ng that the start symbol should be
taken from some match of a matcher/producer pair, you won't know from which
match in case of multiple matches, in case of no matches you wouldn't know
which symbol to take at all, ...
Moreover the matching/producing approach does not de�ne a relationship be-
tween the atoms of the input and output grammar, therefore you can't say you'd
like to just transform the start symbol like you transformed the rules.
There's multiple solutions I can think of, which all have their drawbacks:

• specify the start symbol in the .ti-�le instead of the .tr-�le

21

Ewhile this makes the start symbol independent of the transformation,
it only moves the problem but does not solve it. By putting the
start symbol in the .tr-�le at least you can hard code the produced
grammar's rules' left hand sides as well.

• specify the start symbol according to some match, use only the last/�rst/...
match, default to A.

EThis may work in many cases, but it's also di�cult to think around
and prevents any kind of multitasking when matching/producing.

• specify no start symbol.

ENope. You wouldn't even be able to de�ne the transformation relation.

6 Case studies

In this section we'll look at some example transformations to show the potential
and limitations of the current algorithm.

6.1 Eliminating left-recursion

6.1.1 Grammar

1 start S
2 S −> S_1 S "+" F | S_2 F
3 F −> F_3 " [" S "]" | F_4 <int>

Eliminating left-recursion is quite a di�cult task. We therefore start with a
simpli�ed left-recursive version of the concrete grammar.
At �rst, you might be tempted to want to transform this grammar into one like
so:

1 start C1
2 begin
3 begin
4 in
5 S −> S_1 S t F | S_2 F
6 seq
7 S −> S_3 F t S | S_4 F
8 pattern auto
9 end

10 // . . .
11 end

Although the resulting grammar is indeed not left-recursive, the transformation
fails, since you can't put Ses into Fs and vice versa. You might therefore consider
this transformation:

1 start C1
2 begin
3 begin
4 in
5 S −> S_1 S:1 t F:2 | S_2 F

22

6 seq
7 S −> S_3 F:2 t S :1 | S_4 F
8 pattern auto
9 end

10 // . . .
11 end

Even though this de�nes a valid transformation, it does not preserve the shape
of the tree: instead it reverses it. What we really want is to turn the whole tree
like a wheel. This is achieved using the following transformer:
(the rule was split up to look more like the textbook example of eliminating left-

recursion)

1 start A
2 begin
3 S1 = A
4 begin
5 S1_1 = c o l l a p s e S1 S_1
6 in
7 S −> S_1 S t F | S_2 F
8 out
9 S1 −> S1_1 F R

10 R −> R_2 "" | R_1 t S1
11 pattern
12 S_2 x = S1_1 x (R_2 "")
13 S_1 (S_2 x) t y = S1_1 x (S_2 y)
14 S_1 (S1_1 x y) t z = S1_1 x (S_1 y t z)
15 (x : : S) = R_1 t x
16 end
17 // t h i s part i s s t r a i g h t forward in fo rmat ion copying
18 begin
19 in
20 A −> A_2 x B y
21 seq
22 A −> A_2 x S1 y
23 pattern auto
24 end
25 begin
26 S1 = F
27 S1_1 = c o l l a p s e S1 A_1
28 in
29 A −> A_1 <int>
30 seq
31 S1 −> S1_1 <int>
32 pattern auto
33 end
34 end

6.1.2 Transformed grammar

1 start A

23

2 F −> F_3 " [" A "]"
3 | F_4 <int>
4 A −> A_1 F R
5 R −> R_1 "+" A
6 | R_2 ""

Each of the pattern synonyms will now be analysed on it's own. I'll use the in-
stantiated ones, since they are more verbose and type annotated. As a reminder:
the left-hand side corresponds loosely to the input grammar, the right-hand side
to the transformed grammar.
(S_2 (x :: F)) = (A_1 (x :: F) (R_2 "")):
This is the easiest pattern synonym: We encountered a S2-branch containing
an F . This is easily stored in an A1 with no rest R.

(S_1 (S_2 (x :: F)) (t :: "+") (y :: F)) = (A_1 (x :: F) (S_2 (y :: F))):
The variable x again is easy: we are on one of the last left-recursive branches,
so we can put the contained information directly into a new A-branch.
y is slightly more complicated: It looks easy enough on the left hand side: it's
direct information in our branch. On the right hand side it is written as an S2

though, which is strange at �rst, since S2 belongs to the input grammar. In
that case, when the written type and the expected type does not �t, i.e. we've
gotten a type error, the algorithm tries to transform this not-matching pattern
synonym branch to the correct type. In short, this subpattern means: take the
y, wrap it in a S2 branch, and try to go from there.
It's not needed in this case, but it demonstrates a neccessary and powerful
feature.

(S_1 (A_1 (x :: F) (y :: R)) (t :: "+") (z :: F))

= (A_1 (x :: F) (S_1 (y :: S) (t :: "+") (z :: F)))

This is the main pattern of the conversion: it expresses rotating the entire tree.
The left hand side extracts the left-most leaf x and corresponds to what we
want to get at the end, since the constructor A1 will be the left-most subtree.
y contains everything between x and the right side of our tree, z.
The right hand side stores this x directly, storing the right-most leaf is done
again by putting it in a rule that can store the middle of the tree and the right-
most leaf.
This rule raises three type errors: The inclusion of A and S in one-another are
already familiar; the type error arising from y beeing either an R or an S is
new. All type errors are dealt with by the algorithm, note that you can use this
to do subtree conversions.

(x :: S) = (R_1 (t :: "+") (x :: A)):
This pattern is both trivial and interesting: It just stores some x of type S in
an R-rule. It's interesting because it demonstrates a feature: If you don't care
about the constructor of some branch but know how to transform it to a branch
of another type like we do with S to A because of the �rst three patterns, you
can generalize the constructors into a type-annotated variable instead.
Note, that this is the �rst pattern not relating types S and A, but S and R.
The algorithm is not confused by this since it chooses from the applied patterns
by type relations.

24

The following two patterns are autogenerated copy patterns.
(F_3 (1 :: "[") (2 :: S) (3 :: "]")) = (F_3 (1 :: "[") (2 :: A) (3 :: "]"))

(F_4 (1 :: <int>)) = (F_4 (1 :: <int>))

6.1.3 Sample transformation

We start by parsing [2 + 3] with the resulting grammar:

A1

R2

�

F3

']'A1

R1

A1

R2

�

F4

3

'+'

F4

2

'['

Transformed to the original grammar we get:

S2

F3

']'A1

R1

A1

R2

�

F4

3

'+'

F4

2

'['

Woah, something wen't wrong there! The tree still contains subtrees of type A
and is therefore not of the original grammar. This happened, because we didn't
change the type F , so the translation of pattern synonyms assumed we were
done. To enforce deeper recursion, we add the keyword force to pattern. This
increases tree translation time by a lot, but yields the correct backwards tree:

25

S2

F3

']'S1

F4

3

'+'S2

F4

2

'['

Transformed to the right recursive grammar again:

A1

R2

�

F3

']'A1

R1

A1

R2

�

F4

3

'+'

F4

2

'['

6.1.4 More complex grammars

Transforming more complex grammars and their syntax trees, as in the �rst
case study, is possible but so slow that trees of a depth of more than eight take
more than 20 minutes and 12GB RAM without �nding a solution on a recent,
fast CPU. This is at least partly due to prolog doing more in-depth searches
than possibly needed and not searching multi-threaded and could be something
to work on in the future.

6.2 Left-factoring, inlining and Chomsky-two-form

Left-factoring, inlining and Chomsky-two-form are all quite easy, since they all
only insert or remove Nonterminals and move stu� around. As an example we'll
look at chomsky-two-form in detail and only show example transformations of
the other two. Chomsky-two-form is a variant of chomsky-normal-form where
we don't require all rules to be of one of the following forms:

A -> B C

A -> D

26

A -> <TERMINAL>

but rather only require them to have at most two atoms on the right hand side.

6.2.1 Grammar

1 start S
2 S −> S_2 " i f " E " then " S " else " S
3 | S_1 " i f " E " then " S
4 | S_t <int>
5 E −> E_T "1" | E_F "0"

We would like to get some kind of grammar like this, an equivalent grammar in
Chomsky-two-form:

1 start S
2 S −> S_2 S1 S
3 | S_1 S5 S
4 | S_t <int>
5 E −> E_T "1" | E_F "0"
6 S1 −> S1_1 S2 " else "
7 S2 −> S2_1 S3 S
8 S3 −> S3_1 S4 " then "
9 S4 −> S4_1 " i f " E

10 S5 −> S5_1 S6 " then "
11 S6 −> S6_1 " i f " E

6.2.2 Transformer

1 start S
2 begin
3 begin
4 A1 = newName A1
5 in
6 A −> A_1 _B:1 _C:1 . . .D
7 out
8 A −> A_1 _B:1 A1
9 A1 −> A1_1 _C:1 . . .D

10 pattern auto force
11 end
12 begin
13 in
14 C −> C_1 _A _B
15 seq
16 C −> C_1 _A _B
17 pattern auto force
18 end
19 begin
20 in
21 C −> C_1 _A
22 seq
23 C −> C_1 _A

27

24 pattern auto force
25 end
26 end

As you can see here, many things can be done automatically and it's easy to
write an understandable transformer �le. Note the ...D-atom: it matches one
or more nonterminals and terminals. Also note the force toggle: it makes
the algorithm try harder to transform subtrees. This is needed whenever a
subtree's content should change, but it's type stays the same, which is mostly
needed when doing exhaustive transformations since you have to keep types
unchanged when copying rules, otherwise the algorithm doesn't know when to
stop applying rules.
Applying this �le only once doesn't fully transform the grammar but yields the
following:

1 start S
2 A11 −> A11_1 E " then " S
3

4 S −> S_2 " i f " A10
5 | S_1 " i f " A11
6 | S_t <int>
7

8 E −> E_T "1"
9 | E_F "0"

10

11 A10 −> A10_2 E " then " S " else " S

What really is necessary is to apply the transformation exhaustively, i.e. until
nothing changes anymore. Therefore in the transformer-instructions-�le, we
write exhst("chomsky.tr") instead of trans("chomsky.tr"). This produces:

1 start S
2 A15 −> A15_2 " else " S
3

4 E −> E_T "1"
5 | E_F "0"
6

7 A11 −> A11_1 E A13
8

9 S −> S_2 " i f " A10
10 | S_1 " i f " A11
11 | S_t <int>
12

13 A12 −> A12_2 " then " A14
14 A13 −> A13_1 " then " S
15 A14 −> A14_2 S A15
16 A10 −> A10_2 E A12

28

which indeed is of the chomsky-two-form.
6.2.3 Sample transformation

We'll start by parsing if 1 then 2 else if 0 then 3:

S2

S1

St

3

thenEF

0

if

elseSt

2

thenET

1

if

Transformed:
S2

A102

A122

A142

A152

S1

A111

A131

St

3

then

EF

0

if

else

St

2

then

ET

1

if

Transformed backwards:
S2

S1

St

3

thenEF

0

if

elseSt

2

thenET

1

if

29

6.3 Left-factoring

In this case study we want to factor out some parts of a grammar rule, so that
di�erent rules with the same nonterminal on the left hand side only contain up
to one common atom on the right hand side.

6.3.1 Grammar

1 start S
2 S −> S_2 " i f " E " then " S " else " S
3 | S_1 " i f " E " then " S
4 | S_t <int>
5 E −> E_T "1"
6 | E_F "0"

6.3.2 Transformed grammar

1 start A
2 E1 −> E1_T "1"
3 | E1_F "0"
4 A −> A_1 " i f " E1 " then " A S2
5 | A_t <int>
6 S2 −> S2_1 " else " A
7 | S2_2 ""

6.3.3 Transformer

1 start A
2 begin
3 A = A
4 A_1 = c o l l a p s e A S_1
5 in
6 S −> S_1 t i f E:1 tthen S:2
7 | S_2 t i f E:1 tthen S:2 te S :3
8 | S_3 t t : 4
9 out

10 A −> A_1 t i f E1:1 tthen A:2 S2 | A_3 t t : 4
11 S2 −> S2_1 te A:3 | S2_2 ""
12 pattern auto
13 end
14 begin
15 E1 = E1
16 in
17 E −> E_1 x | E_2 y
18 seq
19 E1 −> E1_1 x | E1_2 y
20 pattern auto
21 end

30

6.3.4 Sample transformation

"if 0 then if 1 then 10 else 0" parsed:

S2

St

0

elseS1

St

10

thenET

1

if

thenEF

0

if

Transformed:
A1

S21

At

0

else

A1

S22At

10

thenE1T

1

if

thenE1F

0

if

Transformed backwards:
S2

St

0

elseS1

St

10

thenET

1

if

thenEF

0

if

6.4 Inlining

This case study is e�ectively the reverse transformation of the last case study:
We want to inline some rule to eliminate a nonterminal from the grammar.

6.4.1 Grammar

1 start A
2 E1 −> E1_T "1"
3 | E1_F "0"
4 A −> A_1 " i f " E1 " then " A S2
5 | A_t <int>
6 S2 −> S2_1 " else " A
7 | S2_2 ""

6.4.2 Transformed grammar

1 start S
2 S −> S_2 " i f " E " then " S " else " S

31

3 | S_1 " i f " E " then " S
4 | S_t <int>
5 E −> E_T "1"
6 | E_F "0"

6.4.3 Transformer

1 start S
2 begin
3 S = S
4 S_1 = c o l l a p s e S A_1
5 in
6 A −> A_1 t i f E1:1 tthen A:2 S2 | A_3 t t : 4
7 S2 −> S2_1 te A:3 | S2_2 ""
8 out
9 S −> S_1 t i f E:1 tthen S:2

10 | S_2 t i f E:1 tthen S:2 te S :3
11 | S_3 t t : 4
12 pattern auto
13 end
14 begin
15 E = E
16 in
17 E1 −> E1_1 x | E1_2 y
18 seq
19 E −> E_1 x | E_2 y
20 pattern auto
21 end

6.4.4 Sample transformation

A1

S22A1

S21

At

0

else

At

10

thenE1T

1

if

thenE1F

0

if

S1

S2

St

0

elseSt

10

thenET

1

if

thenEF

0

if

32

A1

S22A1

S21

At

0

else

At

10

thenE1T

1

if

thenE1F

0

if

7 Related works

7.1 Generating attribute grammar-based bidirectional trans-

formations from rewrite rules

This work describes a process to generate bidirectional syntax tree transforma-
tions from attribute grammar rewrite rules[2]. These rewrite rules are similar
to our pattern synonyms, although directed (i.e. always from left to right) but
not easily invertible and more constrained in the following ways:
• The left hand side has to be unique disregarding values of parameters, i.e.
the following corresponding pattern synonyms would all be considered
illegal duplicates of one another:

� A_1 x =...

� A_1 y =...

� A_1 (A_2 x)=...

These restrictions are placed to make the transformation a function, with
some workaround to the last case appearing together with one of the �rst
two introduced later.

• Recursion into the left hand side is not possible, making left-recusion elim-
ination impossible, since you need an in�nitely �nite level of recursion to
get to the left-/right-most child.

Our work doesn't try to generate functions as transformations but instead gen-
erates relations, therefore allowing more than one transformation result and
allowing overlapping patterns.
The paper also doesn't cover grammar transformations.

7.2 XSLT

XSLT (XSL Transformations) are a way to describe how to transform XML-�les
(eXtensible Markup Language) to some other document [3]. To describe how
to transform a XML, you have access to
• searching for a tree node by it's type/node name, or some pattern matching
it or it's relative or absolute position in the tree

• looping through children

• state, as in variables

33

• conditional statements
Using these, you can extract information from the XML-nodes and put them
into any target non-/structure.
Since every syntax tree can be transformed to some XML quite easily, this can
be seen as an approach to modifying parser results, without

• grammar transformation

• backwards transformation

• (easy) reuse of transformations for di�erent grammars
It therefore doesn't solve left-recursion elimination for recursive descent parsing
(it can however describe how to reverse the transformation). XSLT support is
implemented in all major browsers [4].

7.3 biXid: a bidirectional transformation language for XML

This work explores bidirectional XML transformations using relations and XML-
tree walking[5]. It describes relations in a similar way to our Prolog de�nitions.
The following example transforms a Netscape bookmark to an XBEL bookmark:

relation top =

html[head[String],

body[h1[var t as String], dl[var nc]]]

<->

xbel[title[var t as String], var xc]

where

contents(nc, xc)

The corresponding Prolog de�nition would be:

1 relHTMLtoXBELtop(
2 chtml_1 (chead_1 (V1S) , cbody_1 (ch1_1(VtS) , cdl_1 (Vnc))) ,
3 cxbel_1 (c t i t l e_1 (VtS) , Vxc)
4) :− relHTMLtoXBELcontents (Vnc , Vxc) .

However they place some restrictions on the relations which forbid many trans-
formations to transform the XML using two regular automata, no OR in the
where-clause is the most signi�cant one. Rotating a tree is not possible, since
that needs that exact recursion method, and so transforming between left- and
right-recursive trees is impossible, the hardest transformation we looked at.
Also, transforming grammars is not covered.

8 Conclusion

We tried to come up with a way to describe transformations between (context-
free) grammars and generate corresponding syntax-tree transformations. Through-
out this work we've found that it's not enough to describe how grammar rules
change into each other, it's often needed to describe the syntax tree conversions
as well.
In some simple cases, describing the information �ow may be enough, in other
cases pattern synonyms can be enough to express the transformations. It's not
clear at this point if there is a need to extend the way of describing the syntax
tree conversion further, for example by writing prototype Prolog code.

34

References

[1] Martin Lange, Hans Leiÿ, To CNF or not to CNF? An E�cient Yet Pre-
sentable Version of the CYK Algorithm, 2009.

[2] Martins, Saraiva, Fernandes, Wyk., Generating attribute grammar-based
bidirectional transformations from rewrite rules, 2014.

[3] Michael Kay, Saxonica, W3C, XSL Transformations (XSLT) Version 2.0,
2007. http://www.w3.org/TR/xslt20/

[4] w3schools, XSLT Introduction, 2015. http://www.w3schools.com/xsl/

xsl_intro.asp

[5] Kawanaka, Shinya, and Haruo Hosoya, biXid: a bidirectional transformation
language for XML, ACM SIGPLAN Notices. Vol. 41. No. 9. ACM, 2006.

http://en.wikipedia.org/wiki/Formal_grammar

Source code: https://github.com/plneappl/bsc-thesis

35

http://www.w3.org/TR/xslt20/
http://www.w3schools.com/xsl/xsl_intro.asp
http://www.w3schools.com/xsl/xsl_intro.asp
http://en.wikipedia.org/wiki/Formal_grammar
https://github.com/plneappl/bsc-thesis

Selbständigkeitserklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung an-
derer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gle-
icher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat
und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Aus-
führungen, die wörtlich oder sinngemäÿ übernommen wurden, sind als solche
gekennzeichnet.

Simon Wegendt

Tübingen, den 20. Oktober 2015

36

	Introduction
	Motivation
	Goal

	Background information on grammars
	Theory
	Kleene-operator
	Languages
	Languages produced from grammars

	Syntax trees
	Context free grammars
	.grammar-file specification

	The DSL
	Grammar transformation
	Syntax tree transformation
	Sample transformation

	Transformer-instructions file

	Inner workings
	.tr to syntax tree transformations
	Different atomic and composite types
	Applying a transformer block
	Matching rules
	Producing rules

	Pattern synonyms
	Instantiating pattern synonym prototypes
	Automatic generation

	Prolog
	Pattern synonyms to Prolog definitions
	Loading definitions
	Syntax tree translation

	Discussion
	Time complexity
	Problems

	Case studies
	Eliminating left-recursion
	Grammar
	Transformed grammar
	Sample transformation
	More complex grammars

	Left-factoring, inlining and Chomsky-two-form
	Grammar
	Transformer
	Sample transformation

	Left-factoring
	Grammar
	Transformed grammar
	Transformer
	Sample transformation

	Inlining
	Grammar
	Transformed grammar
	Transformer
	Sample transformation

	Related works
	Generating attribute grammar-based bidirectional transformations from rewrite rules
	XSLT
	biXid: a bidirectional transformation language for XML

	Conclusion

