Programming with
dependent types

Seminar

Yufei Cai
WS 2015/16
University of TUbingen



Contents

 \What are dependent types?
e Organization

* Agda and Idris



A dependent type Is a type
that depends on a value.

—Wikipedia



https://en.wikipedia.org/wiki/Dependent_type

Matrix : Set » N » N - Set
Matrix Am n = Vec (Vec An) m

12x2 : Matrix N 2 2

12x2 = (1 ::0 :: []) ::
(Q ::1:: 01 :: [

lTypes that depends on values



m3x2 : Matrix N 3 2
m3x2 = 12x2

[lU:--- B.agda Bot (13,7) [(Agda WordWrap)]
/private/var/tmp/B.agda:24,8-12

2 '= 3 of type N
when checking that the expression 12x2 has type

'Matr'ix N 32

:ﬂ-:%*— *Error* All (1,0) [(Agdalnfo WordWrap)]

lTypes that depends on values



Llookup : v {A : Set} {n : N} -
(1L : N) »
{{safe : 1 is-smaller-than n}} -
Vec An - A

Types that depends on values



nats : Vec N 5
nats = 0 :: 1 ::2 ::3 ::4 0[]

two : N
two = lookup 2 nats

lypes that adepends on values



nats : Vec N 5
nats = 0 :: 1 ::2 ::3 ::4 0[]

S1X : N
s1X = Lookup 6 nats

[lU:--- B.agda 62% (38,26) [(Agda WordWrap)]
No variable of type L was found in scope.

when checking that nats is a valid argument to a
function of type

{{safe : 6 i1s-smaller-than 5}} > Vec N 5 > N

lTypes that depends on values



Types are values



Matrix : Set » N » N - Set
Matrix Am n = Vec (Vec An) m

Types are values



Id : Set » Set
Id A = A

Types are values



-- Haskell
type Id a = a

1nstance Monad Id where

return = \ X -> X
(>>=) =\xf ->f X

Types are values



/var/tmp/h.hs:10:10:

____Type synonym ‘Id’ should have 1 argument, but has been given none
In the instance declaration for ‘Monad Id’

Failed, modules loaded: none.

Prelude> |

Types are values



-- Haskell
newtype Id a = Id { runld :: a }

1nstance Monad Id where
return = \ x -> Id X

(>>=) =\ xf -> f (runld x)

Types are values



| don't think we really expected newtypes to be
quite so ubiquitous in this kind of way. The

INtroc

Mmuck

desi

uction
more
gned t

of newtypes In typeclasses was

fruitful than I'd at all expected when

ne language.

—Simon Peyton Jones



https://skillsmatter.com/skillscasts/4251-lenses-compositional-data-access-and-manipulation

-- Agda
Id : Set » Set
Id A = A

IdMonad : RawMonad Id
IdMonad = record

{ return = A X » X

s >>=_ = AXTf > f x

¥

Types are values



The Damas-Milner approach to type inference
's alive and well and working harder than ever,
even though we have dispensed with the
shackles on programming which allow it to be
complete.

—Altenkirch et al.



http://dl.acm.org/citation.cfm?id=1111038

Organization

Seminar website:
ps.informatik.uni-tuebingen.de/teaching/ws15/pdt/

Every week, somebody teaches everybody else
something and leaves some homework exercises.

First 4 topics are fixed, the rest are up to the
presenter.

There is a small individual programming project at
the end.


http://ps.informatik.uni-tuebingen.de/teaching/ws15/pdt/

Agda and Idris

* Very similar languages

e Choose one, both, or neither



Agda and ldris

 Agda 2.4.2.3 has a robust front-end
and a questionable back-end.

* |dris 0.9.18.1 has a buggy front-end
and a reasonable back-end.



Agda

Fun interactive development environment (emacs)
Reliable type inference and pattern matching
Faster than computing on paper (usually)

Little to no support for impure effects like O or
random number generation



|dris

Shouldn’t be slower than conventional languages
by much more than a constant factor

Designed with systems programming in mind,
comes with an effect system

Gets confused by complicated pattern-matching

Type inference is shaky, don't rely on it


https://groups.google.com/d/msg/idris-lang/mpQgK4yJqEw/7sXj6L8LFr4J

It we wanted, we could shut
these machines down.


http://www.imdb.com/character/ch0000760/quotes

-- Agda
{-# NON_TERMINATING #-}

loop : L
loop = loop
-- Idris
partial
loop : Vo1id
loop = loop

Dirty tricks



-- Agda

open 1import
Relation.Binary.PropositionalEquality

open import
Relation.Binary.PropositionalEquality.TrustMe

badcast : Bool » String

badcast x = subst (A A » A) trustMe x

-- Idris
badcast : Bool -> String
badcast x = believe_me x

Dirty tricks



Homework

1. Install |dris
2. Install Agda
3. Install Agda standard library
4. Write hello-world programs
5. Emall me:
- Your experience with dependent types

- The topics you are most interested In
- Your hello-world program code



