
Modeling Java

About models (of things in general)

No such thing as a \perfect model" | The nature of a model is to
abstract away from details!

So models are never just \good" [or \bad"]: they are always \good
[or bad] for some speci�c set of purposes."

Models of Java

Lots of di�erent purposes �! lots of di�erent kinds of models

I Source-level vs. bytecode level

I Large (inclusive) vs. small (simple) models

I Models of type system vs. models of run-time features (not
entirely separate issues)

I Models of speci�c features (exceptions, concurrency,
re
ection, class loading, ...)

I Models designed for extension

Featherweight Java

Purpose: model \core OO features" and their types and nothing

else.

History:

I Originally proposed by a Penn PhD student (Atsushi Igarashi)
as a tool for analyzing GJ (\Java plus generics"), which later
became Java 1.5

I Since used by many others for studying a wide variety of Java
features and proposed extensions

Things left out

I Re
ection, concurrency, class loading, inner classes, ...

I Exceptions, loops, ...

I Interfaces, overloading, ...

I Assignment (!!)

Things left in

I Classes and objects

I Methods and method invocation

I Fields and �eld access

I Inheritance (including open recursion through this)

I Casting

Example

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd); }

}

Conventions

For syntactic regularity...

I Always include superclass (even when it is Object)

I Always write out constructor (even when trivial)

I Always call super from constructor (even when no arguments
are passed)

I Always explicitly name receiver object in method invocation or
�eld access (even when it is this)

I Methods always consist of a single return expression

I Constructors always
I Take same number (and types) of parameters as �elds of the

class
I Assign constructor parameters to \local �elds"
I Call super constructor to assign remaining �elds
I Do nothing else

Formalizing FJ

Nominal type systems

Big dichotomy in the world of programming languages:

I Structural type systems:
I What matters about a type (for typing, subtyping, etc.) is just

its structure.
I Names are just convenient (but inessential) abbreviations.

I Nominal type systems:
I Types are always named.
I Typechecker mostly manipulates names, not structures.
I Subtyping is declared explicitly by programmer (and checked

for consistency by compiler).

Advantages of Structural Systems

Somewhat simpler, cleaner, and more elegant (no need to always
work wrt. a set of \name de�nitions")

Easier to extend (e.g. with parametric polymorphism)

(Caveat: when recursive types are considered, some of this
simplicity and elegance slips away...)

Advantages of Nominal Systems

Recursive types fall out easily

Using names everywhere makes typechecking (and subtyping, etc.)
easy and e�cient

Type names are also useful at run-time (for casting, type testing,
re
ection, ...).

Clear (and compiler-checked) documentation of design intent; no
accidential subtype relations.

Blame can be assigned properly if a subtype test fails.

Java (like most other mainstream languages) is a nominal system.

Representing objects

Our decision to omit assignment has a nice side e�ect...

The only ways in which two objects can di�er are (1) their classes
and (2) the parameters passed to their constructor when they were
created.

All this information is available in the new expression that creates
an object. So we can identify the created object with the new
expression.

Formally: object values have the form new C(v)

FJ Syntax

Syntax (terms and values)

t ::= terms

x variable

t.f �eld access

t.m(t) method invocation

new C(t) object creation

(C) t cast

v ::= values

new C(v) object creation

Syntax (methods and classes)

K ::= constructor declarations

C(C f) {super(f); this.f=f;}

M ::= method declarations

C m(C x) {return t;}

CL ::= class declarations

class C extends C {C f; K M}

Subtyping

Subtyping

As in Java, subtyping in FJ is declared.

Assume we have a (global, �xed) class table CT mapping class
names to de�nitions.

CT(C) = class C extends D {...}

C <: D

C <: C

C <: D D <: E

C <: E

More auxiliary de�nitions

From the class table, we can read o� a number of other useful
properties of the de�nitions (which we will need later for
typechecking and operational semantics)...

Field(s) lookup

�elds(Object) = ;

CT(C) = class C extends D {C f; K M}

�elds(D) = D g

�elds(C) = D g; C f

Method type lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mtype(m; C) = B!B

CT(C) = class C extends D {C f; K M}

m is not de�ned in M

mtype(m; C) = mtype(m; D)

Method body lookup

CT(C) = class C extends D {C f; K M}

B m (B x) {return t;} 2 M

mbody(m; C) = (x; t)

CT(C) = class C extends D {C f; K M}

m is not de�ned in M

mbody(m; C) = mbody(m; D)

Valid method overriding

mtype(m; D) = D!D0 implies C = D and C0 = D0

override(m; D; C!C0)

Evaluation

The example again

class A extends Object { A() { super(); } }

class B extends Object { B() { super(); } }

class Pair extends Object {

Object fst;

Object snd;

Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd; }

Pair setfst(Object newfst) {

return new Pair(newfst, this.snd); }

}

Evaluation

Projection:

new Pair(new A(), new B()).snd �! new B()

Evaluation

Casting:

(Pair)new Pair(new A(), new B())

�! new Pair(new A(), new B())

Evaluation

Method invocation:

new Pair(new A(), new B()).setfst(new B())

�!

�
newfst 7! new B();

this 7! new Pair(new A(),new B())

�

new Pair(newfst, this.snd)

i.e., new Pair(new B(), new Pair(new A(), new B()).snd)

((Pair) (new Pair(new Pair(new A(),new B()), new A())

.fst).snd

�! ((Pair)new Pair(new A(),new B())).snd

�! new Pair(new A(), new B()).snd

�! new B()

Evaluation rules

�elds(C) = C f

(new C(v)).fi �! vi
(E-ProjNew)

mbody(m; C) = (x; t0)

(new C(v)).m(u)

�! [x 7! u; this 7! new C(v)]t0

(E-InvkNew)

C <: D

(D)(new C(v)) �! new C(v)
(E-CastNew)

plus some congruence rules...

t0 �! t00

t0.f �! t00.f
(E-Field)

t0 �! t00

t0.m(t) �! t00.m(t)
(E-Invk-Recv)

ti �! t0
i

v0.m(v, ti, t) �! v0.m(v, t0
i
, t)

(E-Invk-Arg)

ti �! t0
i

new C(v, ti, t) �! new C(v, t0
i
, t)

(E-New-Arg)

t0 �! t00

(C)t0 �! (C)t00
(E-Cast)

Typing

Typing rules

x:C 2 �

� ` x : C
(T-Var)

Typing rules

� ` t0 : C0 �elds(C0) = C f

� ` t0.fi : Ci
(T-Field)

Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C
(T-UCast)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C
(T-DCast)

Why two cast rules?

Because that's how Java does it!

Typing rules

� ` t0 : D D <: C

� ` (C)t0 : C
(T-UCast)

� ` t0 : D C <: D C 6= D

� ` (C)t0 : C
(T-DCast)

Why two cast rules? Because that's how Java does it!

Typing rules

� ` t0 : C0
mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C
(T-Invk)

Note that this rule \has subsumption built in" | i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Typing rules

� ` t0 : C0
mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C
(T-Invk)

Note that this rule \has subsumption built in" | i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Typing rules

� ` t0 : C0
mtype(m; C0) = D!C

� ` t : C C <: D

� ` t0.m(t) : C
(T-Invk)

Note that this rule \has subsumption built in" | i.e., the typing
relation in FJ is written in the algorithmic style of TAPL chapter
16, not the declarative style of chapter 15.

Why? Because Java does it this way!

But why does Java do it this way??

Java typing is algorithmic

The Java typing relation is de�ned in the algorithmic style, for (at
least) two reasons:

1. In order to perform static overloading resolution, we need to
be able to speak of \the type" of an expression

2. We would otherwise run into trouble with typing of
conditional expressions

Let's look at the second in more detail...

Java typing must be algorithmic

We haven't included them in FJ, but full Java has both interfaces

and conditional expressions.

The two together actually make the declarative style of typing rules
unworkable!

Java conditionals

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 ?

Actual Java rule (algorithmic):

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 min(T2; T3)

Java conditionals

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 ?

Actual Java rule (algorithmic):

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 min(T2; T3)

Java conditionals

More standard (declarative) rule:

t1 2 bool t2 2 T t3 2 T

t1 ? t2 : t3 2 T

Algorithmic version:

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 T2 _ T3

Requires joins!

Java conditionals

More standard (declarative) rule:

t1 2 bool t2 2 T t3 2 T

t1 ? t2 : t3 2 T

Algorithmic version:

t1 2 bool t2 2 T2 t3 2 T3

t1 ? t2 : t3 2 T2 _ T3

Requires joins!

Java has no joins

But, in full Java (with interfaces), there are types that have no
join!

E.g.:

interface I {...}

interface J {...}

interface K extends I,J {...}

interface L extends I,J {...}

K and L have no join (least upper bound) | both I and J are
common upper bounds, but neither of these is less than the other.

So: algorithmic typing rules are really our only option.

FJ Typing rules

�elds(C) = D f

� ` t : C C <: D

� ` new C(t) : C
(T-New)

Typing rules (methods, classes)

x : C; this : C ` t0 : E0 E0 <: C0
CT(C) = class C extends D {...}

override(m; D; C!C0)

C0 m (C x) {return t0;} OK in C

K = C(D g, C f) {super(g); this.f = f;}

�elds(D) = D g M OK in C

class C extends D {C f; K M} OK

Properties

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)(new Object())

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)(new Object())

Progress

Problem: well-typed programs can get stuck.

How?

Cast failure:
(A)(new Object())

Formalizing Progress

Solution: Weaken the statement of the progress theorem to

A well-typed FJ term is either a value or can reduce one

step or is stuck at a failing cast.

Formalizing this takes a little more work...

Evaluation Contexts

E ::= evaluation contexts

[] hole

E.f �eld access

E.m(t) method invocation (rcv)

v.m(v,E,t) method invocation (arg)

new C(v,E,t) object creation (arg)

(C)E cast

Evaluation contexts capture the notion of the \next subterm to be
reduced," in the sense that, if t �! t0, then we can express t and
t0 as t = E [r] and t0 = E [r0] for a unique E , r, and r0, with
r �! r0 by one of the computation rules E-ProjNew,
E-InvkNew, or E-CastNew.

Progress

Theorem [Progress]: Suppose t is a closed, well-typed normal
form. Then either (1) t is a value, or (2) t �! t0 for some t0, or
(3) for some evaluation context E , we can express t as
t = E [(C)(new D(v))], with D 6<: C.

Preservation

Theorem [Preservation]: If � ` t : C and t �! t0, then � ` t0 : C0

for some C0 <: C.

Proof: Straightforward induction.

???

Preservation

Theorem [Preservation]: If � ` t : C and t �! t0, then � ` t0 : C0

for some C0 <: C.

Proof: Straightforward induction. ???

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()

Preservation?

Surprise: well-typed programs can step to ill-typed ones!

(How?)

(A)(Object)new B() �! (A)new B()

Solution: \Stupid Cast" typing rule

Add another typing rule, marked \stupid" to indicate that an
implementation should generate a warning if this rule is used.

� ` t0 : D C 6<: D D 6<: C

stupid warning

� ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we're going to claim that the
model is an accurate representation of (this fragment of) Java.

Solution: \Stupid Cast" typing rule

Add another typing rule, marked \stupid" to indicate that an
implementation should generate a warning if this rule is used.

� ` t0 : D C 6<: D D 6<: C

stupid warning

� ` (C)t0 : C
(T-SCast)

This is an example of a modeling technicality; not very interesting
or deep, but we have to get it right if we're going to claim that the
model is an accurate representation of (this fragment of) Java.

Correspondence with Java

Let's try to state precisely what we mean by \FJ corresponds to
Java":

Claim:

1. Every syntactically well-formed FJ program is also a
syntactically well-formed Java program.

2. A syntactically well-formed FJ program is typable in FJ
(without using the T-SCast rule.) i� it is typable in Java.

3. A well-typed FJ program behaves the same in FJ as in Java.
(E.g., evaluating it in FJ diverges i� compiling and running it
in Java diverges.)

Of course, without a formalization of full Java, we cannot prove
this claim. But it's still very useful to say precisely what we are
trying to accomplish|e.g., it provides a rigorous way of judging
counterexamples.

Alternative approaches to casting

I Loosen preservation theorem

I Use big-step semantics

More on Evaluation Contexts

Progress for FJ

Theorem [Progress]: Suppose t is a closed, well-typed normal
form. Then either

1. t is a value, or

2. t �! t0 for some t0, or

3. for some evaluation context E , we can express t as

t = E [(C)(new D(v))]

with D 6<: C.

Evaluation Contexts

E ::= evaluation contexts

[] hole

E.f �eld access

E.m(t) method invocation (rcv)

v.m(v,E,t) method invocation (arg)

new C(v,E,t) object creation (arg)

(C)E cast

E.g.,
[].fst

[].fst.snd

new C(new D(), [].fst.snd, new E())

Evaluation Contexts

E [t] denotes \the term obtained by �lling the hole in E with t."

E.g., if E = (A)[], then

E [(new Pair(new A(), new B())).fst]
=

(A)((new Pair(new A(), new B())).fst)

Evaluation Contexts

Evaluation contexts capture the notion of the \next subterm to be
reduced":

I By ordinary evaluation relation:

(A)((new Pair(new A(), new B())).fst) �! (A)(new A())

by E-Cast with subderivation E-ProjNew.

I By evaluation contexts:

E = (A)[]

r = (new Pair(new A(), new B())).fst

r0 = new A()

r �! r0 by E-ProjNew
E [r] = (A)((new Pair(new A(), new B())).fst)

E [r0] = (A)(new A())

Precisely...

Claim 1: If r �! r0 by one of the computation rules
E-ProjNew, E-InvkNew, or E-CastNew and E is an
arbitrary evaluation context, then E [r] �! E [r0] by the ordinary
evaluation relation.

Claim 2: If t �! t0 by the ordinary evaluation relation, then there
are unique E , r, and r0 such that

1. t = E [r],

2. t0 = E [r0], and

3. r �! r0 by one of the computation rules E-ProjNew,
E-InvkNew, or E-CastNew.

Hence...

Evaluation contexts are an alternative to congruence rules: Just
add the rule r�!r

0

E [r]�!E [r0] .

Evaluation contexts are also quite useful for formalizing advanced
control operators - the evaluation context is a representation of the
current continuation.

They are also useful to formulate contextual/observational
equivalence of terms.

