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Chapter Overview 
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6.1 Frameworks vs. Design Patterns vs. 
Applications vs. Libraries 

Frameworks and Libraries 
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What is an (OO) Framework? 

� A set of cooperating classes that makes up a reusable design for a 
specific class of software.  

� A framework provides architectural guidance by partitioning the design 
into abstract classes and defining their responsibilities and 
collaborations.  

� A developer customizes the framework to a particular application by 
subclassing and composing instances of framework classes. That’s why 
frameworks are often called  semi-complete applications.  

� A framework solves problem in a particular problem domain. 
See next slide for examples.  

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 
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What is a library? 

� A set of reusable coherent programming abstractions (classes, methods, 
functions, data structures)  

�  Focus on black-box reuse 
� A library can also be seen (and used as) a domain-specific language 

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 
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Libraries vs. Frameworks 

� Control flow  is dictated by the framework and is the same for all 
applications. 

� The framework is the main program in coordinating and sequencing 
application activity. i.e., it manages the object lifecycle  

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 

Main  
Program 

user-supplied  
code 

library code 

Traditional libraries 

 Main  
Program Framework 

user-supplied  
     code 

Frameworks 
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Libraries vs Frameworks 

�  „Traditional“ difference: Who is in charge of the control flow 

� However, this difference is only well-defined if one considers libraries that 
can only be parameterized by first-order values 

�  Libraries that accept higher-order parameters (such as first-class 
functions or objects) are quite similar to frameworks 
� Similar inversion of control 

� Remaining difference: Frameworks are often white-box or grey-box 
whereas libraries are more black-box 
�  Frameworks can be adapted in more ways, also ways not anticipated by 

the framework developer 
�  Library developers must anticipate every extension point, but in turn 

libraries can be changed more easily without invaliding clients 

� No strict discrimination between the two terms possible 

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 
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Frameworks vs. Design Patterns 

� So what is the difference between both frameworks and design patterns? 

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 
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Recap, a Pattern is… 
Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 

 
Each pattern describes a problem which occurs over and over 
again in our environment, and then describes the core of the 
solution to that problem, in such a way that you can use this 
solution a million times over, without ever doing it the same 

way twice. 
 
 

- Christopher Alexander 
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A Design Pattern is … (continued) 
Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 

 
Design Pattern. A design pattern systematically names, 
motivates, and explains a general design that addresses a 
recurring design problem in object-oriented systems. 
 
It describes the problem, the solution, when to apply the 
solution, and its consequences. 
 
The solution is a general arrangement of objects and classes 
that solve the problem. 
 
The solution is customized and implemented to solve the 
problem in a particular context. 
 

- GoF 
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Frameworks vs. Design Patterns 

� Sounds similar (at least partially), right?  
� So again, so what is the difference between a framework and a design 

pattern? 

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 
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Frameworks vs. Design Patterns 

� Patterns are smaller than frameworks. 
� A framework contains many patterns (Visitor, Decorator etc.). 
� The opposite is not true. 

� Patterns are language independent. 
� Patterns solve OO language issues (Java, C++, Smalltalk). 
�  Frameworks are written in a specific programming language. 

� Patterns are more abstract than frameworks.  
� Patterns do not solve application domain specific problems. 
�  Frameworks provide support for a particular application domain. 

Frameworks provide reusable code 

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 
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Frameworks vs. Design Patterns 

Frameworks describe: 
�  the interface of each object and the flow of control between them. 
� how the responsibilities are mapped onto its objects 

 
In other words: 
� A Framework provides architectural guidance 
� by partitioning the design into abstract classes and 
� defining their responsibilities and collaborations. 

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 

The high level design is the main intellectual content of 
software, and frameworks are a way to reuse it! 
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Levels of Reuse with Frameworks 
Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 

Software 
Design 

Analysis 

Reuse 

Implementation 
Code 
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A Framework is not… 

�  ... a design pattern. 
� patterns describe ideas and perspectives; 
�  frameworks are implemented software. 

� … an application. 
�  frameworks do not necessarily provide a default behavior, 

hence they are not executable programs; 
� They can be perceived as a partial design but they do not describe 

every aspect of an application. 

� … a class library. 
� applications that use classes from a library invoke predefined methods, 

whereas frameworks invoke predefined methods supplied by the user. 
à see section about inversion of control for details… 

�  But see earlier discussion about libraries vs. frameworks 

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries 
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6.2 Library Design Principles 

Frameworks and Libraries 
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Libraries 

� The oldest, most common, and most successful way of reusing code 
�  Languages are designed to support libraries 
� Works together with static typing, import/export mechanisms, separate 

compilation, … 
�  If you have the choice of achieving your reuse goal with libraries or with 

some other mechanism, then libraries are typically the best choice 
� Composability with other libraries 
� Support by type and module system 
�  Information hiding, substitutability, … 

� But libraries need a good design to be useful! 

Frameworks and Libraries: Library Design Principles 
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Basic Library Design Principles 

�  Libraries should be as context-independent as possible 
� Every context dependency limits reusability 

� Context dependencies (e.g. on other libraries) should be expressed via 
interfaces 
�  Leaves more freedom to library users 

�  Libraries should have a clean, well-defined scope 
�  Library should have a well-defined interface 
� To make black-box usage possible 
�  Interface should be cleanly separated from implementation details 
� E.g. via separate packages 

�  Library designer has to think about variability points of the library 
� Different form of variability 
� Parameterization by values 
� Parameterization by types 
� Parameterization by functions/closures or objects 

Frameworks and Libraries: Library Design Principles 
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Issues in Library Design 

� Simulating a domain-specific syntax 
� Depends on syntactic flexibility of host language 
� E.g., possibility to use operators, prefix/infix/postfix notation etc. 

� Domain-specific optimizations 
� Can be difficult to achieve with traditional libraries 
�  Idea of „active library“ 

Frameworks and Libraries: Library Design Principles 
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6.3 Customizing Frameworks 

Frameworks and Libraries 
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Customization Points 

� So far, we talked about frameworks being semi-complete applications  
that developers need to extend to make them work as application. Thus, 
the question arises how one can customize a framework. 

� So far we have learned that frameworks have an architecture and a 
design that is reused by application developers. Let’s consider following 
collection of nodes and links to represent a framework … 

Frameworks and Libraries: Customizing Frameworks 
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Simplified Representation of a Framework 

� Nodes represent classes, links between nodes represent associations 
between classes used for collaboration between classes. 

Frameworks and Libraries: Customizing Frameworks 
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Framework Hot Spots 

� Since frameworks are incomplete there must be some points in the 
design allowing a developer to extend the framework. This extension 
points are called hot spots. 

Frameworks and Libraries: Customizing Frameworks 

Parts of the framework that are 
open to extension and 

customization are called hot spots 
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� Not all parts of the framework are necessarily designed for being 
extensible. These non-extensible spots are called frozen spots. 

Framework Frozen Spots 
Frameworks and Libraries: Customizing Frameworks 

Parts of the framework that are not 
open to extension are called cold 

or frozen spots 
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How to extend a framework concretely? 

� You learned that there are some parts that can be extended and some 
can’t. But how do you do that actually? 

� The short answer: It depends. Before explaining that, we need to 
introduce another classification for frameworks (additionally to the 
classification by their application domain). 

Frameworks and Libraries: Customizing Frameworks 
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Framework Classification By Extension Technique 

Frameworks can (also) be classified by the techniques used to extend 
them. We distinguish between three different kinds of frameworks: 

Frameworks and Libraries: Customizing Frameworks 
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White-box Frameworks 

� White-box frameworks are customized by 
subclassing existing framework classes. 

� Subclassing requires detailed knowledge: 
� Component interfaces of the class. 
�  Flow of control in the new component . 
� Overriding predefined hook methods à later… 

� Learning white-box frameworks is hardest but 
most powerful way. 

Frameworks and Libraries: Customizing Frameworks 
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Extension Example 

� One way is extending a framework base class - maybe this extension 
uses the template method pattern.  

Frameworks and Libraries: Customizing Frameworks 

public class MyWizard extends Wizard { 
 
    @Override 
    public void addPages() { 
        // TODO Auto-generated method stub 
        super.addPages(); 
    } 
 
    @Override 
    public boolean performFinish() { 
        // TODO Auto-generated method stub 
        return false; 
    } 
} 
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Black-box Frameworks 

� Black-box frameworks are customized using 
already existing components. 

� Black-box requires less programming: 
� Connecting existing components only. 
� Writing of new classes is not required. 

� Black-box frameworks are less flexible. 
� Usability depends on component library. 

� Black-box frameworks are easier to learn. 

Frameworks and Libraries: Customizing Frameworks 
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Extension Example 

�  In black-box frameworks you may observe the same patterns as in white-
box frameworks. But the main difference is: you don’t provide the 
implementations for these components – you just reuse them and plug 
them together as you need it. 

� Technical difference: Object composition (black-box reuse) vs. 
subclassing (white/grey/black-box reuse, depending on the subclass 
interface description) 

Frameworks and Libraries: Customizing Frameworks 

Like building a toy 
house from Legos 

… 
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Grey-box Frameworks 

� Grey-box frameworks using both  
parameterization and refinement  

�  Frameworks typically evolve from white-box to black-box frameworks 
over a number of iterations: 

� However, it will be hard to find pure black-box frameworks. Typically, 
they contain a few white-box elements too. 

Frameworks and Libraries: Customizing Frameworks 

White-box Black-box 

Grey-box 
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6.4 Inversion of Control 
Frameworks and Libraries 

The 

Principle 

“Don’t call us – 
we call you!” 

or … 
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Libraries vs. Frameworks 

� Control flow  is dictated by the framework and is the same for all 
applications. 

� The framework is the main program in coordinating and sequencing 
application activity. i.e., it manages the object lifecycle  

Frameworks and Libraries: Inversion of Control 
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Small Example of IoC in Action 
Frameworks and Libraries: Inversion of Control 

User supplied code Java Collections 
Framework 

 
main

list

myComparator

Collections

sort(list, myComparator)

* compare(o1, o2)

Collections.sort(list, new MyComparator()); 
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Dependency Inversion in Frameworks 

� Dependency Inversion is the most essential principle applied on 
frameworks . 

Frameworks and Libraries: Inversion of Control 

+ sort(List, Comparator)

Collections

+ compare(T, T)
+ equals(Object)

<<interface>>
Comparator<T>

+ compare(T, T)
+ equals(Object)

MyComparator
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Dependency Inversion in Functional Languages 

� Sorting in Haskell: 

Dependency Inversion by Higher-Order Function: 
 
sort :: (a -> a -> Bool) -> [a] -> [a] 
 
Example: sort (\x y -> x > y) [3,6,2]  

 
Dependency Inversion with Type Classes 
 
sort :: Ord a => [a] -> [a]  
 
Example: 
 
instance Ord Int where 
  a <= b = a > b 
 
sort [3,6,2] 

 

Frameworks and Libraries: Inversion of Control 



37 

6.5 Dependency Injection 
Frameworks and Libraries 
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Motivation 

Given: 
� We have many components and want to build an application out of 

them. 
� We can decrease coupling by good OO practices such as programming 

against interfaces, registries, etc. 
� However, most components collaborate with other components or need 

to have access to resources. 

Questions: 
� How can we minimize the coupling between components, between a 

component and the environment, between a component and its required 
services? 

� How can we improve the reuse potential? 
� How can we achieve a better testability of our components? 

Frameworks and Libraries: Dependency Injection 
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Developing A tweets client 

Steps: 
� Setting the stage 
� Constructors 
�  Factories 
� Dependency Injection 
� by hand 
� with Google Guice 

Frameworks and Libraries: Dependency Injection 

From a “normal” design to Dependency Injection (DI) 
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  Code you might write 
Frameworks and Libraries: Dependency Injection 

 public void postButtonClicked() { 
    String text = textField.getText();     
 
    if (text.length() > 140) { 
      final Shortener shortener = new TinyUrlShortener(); 
      text = shortener.shorten(text); 
    } 
 
    if (text.length() <= 140) { 
      final Tweeter tweeter = new SmsTweeter(); 
      tweeter.send(text); 
      textField.setText(""); 
    } 
  } 

A tweets client 
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Problems with this solution? 

� The TweetClient depends on two components: 

� a Shortener (namely, a TinyUrlShortener) for shortening text 
messages that are too long, and 

� a Transport (namely, a SmsTweeter) that sends the message to, say, a 
Twitter server. 

� How about testability? 

� You may have noticed that the code actually builds its dependencies 
immediately, i.e, we call constructors of TinyUrlShortener and 
SmsTweeter directly in our code. 

� This is really convenient and it is really terse but there’s a lot of 
problems with it. Most notably, this code doesn’t lend itself to testing 
because of the hardcoded dependencies! 

Frameworks and Libraries: Dependency Injection 
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Getting dependencies via their constructors 
Frameworks and Libraries: Dependency Injection 

 public void postButtonClicked() { 
    String text = textField.getText();     
 
    if (text.length() > 140) { 
      final Shortener shortener = new TinyUrlShortener(); 
      text = shortener.shorten(text); 
    } 
 
    if (text.length() <= 140) { 
      final Tweeter tweeter = new SmsTweeter(); 
      tweeter.send(text); 
      textField.setText(""); 
    } 
  } 

...calling new directly doesn’t afford testing 

We post to 
tinyurl.com and 
send an SMS for 
each test! This is 
neither fast nor 
reliable. 
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Getting Dependencies from factories 
Frameworks and Libraries: Dependency Injection 

 public void postButtonClicked() { 
    String text = textField.getText();     
 
    if (text.length() > 140) { 
      final Shortener shortener = ShortenerFactory.get(); 
      text = shortener.shorten(text); 
    } 
 
    if (text.length() <= 140) { 
      final Tweeter tweeter = TweeterFactory.get(); 
      tweeter.send(text); 
      textField.setText(""); 
    } 
  } 

Factories come to 
rescue. But they 
introduce another 
problem … 
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Implementing the factory 
Frameworks and Libraries: Dependency Injection 

public class TweeterFactory { 
  private static Tweeter tweeter; 
   
  public static Tweeter get() { 
    if (tweeter == null) { 
      tweeter = new SmsTweeter(); 
    } 
    return tweeter; 
  } 
   
  public static void setForTesting(Tweeter testTweeter) { 
    tweeter = testTweeter; 
  } 
} 

All of this boilerplate slows you down. 

We still have to 
write a factory 
for the URL 
shortener… 
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Factory dependence graph 
Frameworks and Libraries: Dependency Injection 

Design causes a deep net of dependencies... 
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Factory dependency graph 
Frameworks and Libraries: Dependency Injection 

...design applied recursively 
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Testing your code with factories 
Frameworks and Libraries: Dependency Injection 

  @Test 
  public void testTweet() { 
     
    // setup 
    final String message = "Hello!"; 
    final TweetClient tweetClient = new TweetClient(); 
    final MockTweeter tweeter = new MockTweeter(); 
    TweeterFactory.setForTesting(tweeter); 
    ... 
    // exercise 
    tweetClient.getEditor().setText(message); 
    tweetClient.postButtonClicked(); 
     
    // verify 
    assertEquals(message, tweeter.getSent()); 
} 

Using shared mutable factories is error prone… 
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Testing your code with factories 
Frameworks and Libraries: Dependency Injection 

  @Test 
  public void testTweet() { 
     
    // setup 
    final String message = "Hello!"; 
    final TweetClient tweetClient = new TweetClient(); 
    final MockTweeter tweeter = new MockTweeter(); 
    TweeterFactory.setForTesting(tweeter); 
    ... 
    // exercise 
    tweetClient.getEditor().setText(message); 
    tweetClient.postButtonClicked(); 
     
    // verify 
    assertEquals(message, tweeter.getSent()); 
     
    // teardown 
    TweeterFactory.setForTesting(null); 
  } 

Don’t forget to clear 
the playground after 
your tests… 
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6.5.1 Dependency injection by hand 
Frameworks and Libraries: Dependency Injection 

 
 
public class TweetClient{ 
 
  Shortener shortener; 
  Tweeter tweeter; 
 
  public TweetClient(Shortener shortener, Tweeter tweeter) { 
    this.shortener = shortener; 
    this.tweeter = tweeter; 
  } 
 
  public void postButtonClicked() { 

    ... 

    if (text.length() <= 140) { 
      tweeter.send(text); 
      textField.setText(""); 
    } 
  } 
} 

objects come to you 

Dependency 
Injection: rather than 
looking it up, get it 
passed in. 
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Testing with dependency injection 
Frameworks and Libraries: Dependency Injection - Dependency injection by hand 

 

public void testSendTweet() { 

    MockShortener shortener = new MockShortener(); 

    MockTweeter tweeter = new MockTweeter(); 

    TweetClient tweetClient 

               = new TweetClient(shortener, tweeter); 

    tweetClient.getEditor().setText("Hello!"); 

    tweetClient.postButtonClicked(); 

    assertEquals("Hello!", tweeter.getSent()); 

} 

no cleanup required… 

However, we still have 
to provide create the 
TweetClient, right? 
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Where does the dependency go? 
Frameworks and Libraries: Dependency Injection - Dependency injection by hand 

 
public class TweetClientFactory { 
 
    private static TweetClient testValue; 
 
    public static TweetClient get() { 
 
        if (testValue != null) { 
            return testValue; 
        } 
 
        Shortener shortener = ShortenerFactory.get(); 
        Tweeter tweeter = TweeterFactory.get(); 
        return new TweetClient(shortener, tweeter); 
    } 
} 

DI motto: Push 
dependencies from 
the core to the edges 
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Where does the dependency go? 
Frameworks and Libraries: Dependency Injection - Dependency injection by hand 

your application code sheds its heavyweight dependencies 
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Recap 

So what are your goals? 

� Keep as flexible as possible which components to use at runtime, i.e., 
reduce any hard-coded dependencies in production code. 

� Separate the glue code from the component code 

� Can be done by hand, or with the help of DI inversion tools such as 
Guice 

Frameworks and Libraries: Dependency Injection - Dependency injection by hand 
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Dependency Injection with Guice 
Frameworks and Libraries: Dependency Injection - Dependency injection by hand 
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Configuring the injector using modules 
Frameworks and Libraries: Dependency Injection - Dependency injection by hand 

import com.google.inject.AbstractModule; 
 
public class TweetModule extends AbstractModule { 
 
    protected void configure() { 
        bind(Tweeter.class).to(SmsTweeter.class); 
        bind(Shortener.class).to(TinyUrlShortener.class); 
    } 
} 
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Telling Guice to use your constructor 
Frameworks and Libraries: Dependency Injection - Dependency injection by hand 

import com.google.inject.Inject; 
 
public class TweetClient { 
 
    private final Shortener shortener; 
    private final Tweeter tweeter; 
 
    @Inject  
    public TweetClient(Shortener shortener, Tweeter tweeter) { 
        this.shortener = shortener; 
        this.tweeter = tweeter; 
    } 
… 

annotate a constructor with @Inject 
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Bootstrapping Guice 
Frameworks and Libraries: Dependency Injection - Dependency injection by hand 

public static void main(String[] args) { 
 
    Injector injector =  
            Guice.createInjector(new TweetModule()); 
 
    TweetClient tweetClient =  
            injector.getInstance(TweetClient.class); 
 
 
    tweetClient.show(); 
} 

the DI framework creates 
all dependencies for you. 
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Bootstrapping Guice for Testing 
Frameworks and Libraries: Dependency Injection - Dependency injection by hand 

import com.google.inject.AbstractModule; 
 
public class TweetTestModule extends AbstractModule { 
 
    protected void configure() { 
        bind(Tweeter.class).to(MockTweeter.class); 
        bind(Shortener.class).to(MockShortener.class); 
    } 
} 

Create a test configuration: 
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Bootstrapping Guice for Testing 
Frameworks and Libraries: Dependency Injection - Dependency injection by hand 

public void testTweet() { 
 
    Injector injector =  
            Guice.createInjector(new TweetTestModule()); 
 
    TweetClient tweetClient =  
            injector.getInstance(TweetClient.class); 
 
 
    tweetClient.getEditor().setText("Hello!"); 
    tweetClient.postButtonClicked(); 
    assertEquals("Hello!", tweeter.getSent());} 

And use it in your tests… 
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Guice Recap 

� Helps in separating wiring from component code 
� Code becomes short 

� There are also disadvantages 
�  Loss of static type safety 
� What if a more flexible mapping from interfaces to classes is needed? 
� E.g., not a global mapping but mapping on a per-case basis? 
� Guice offers no support for these cases 

� Reflection is slow – this may or may not be a problem 

Frameworks and Libraries: Dependency Injection - Dependency injection by hand 
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Inversion of Control vs. dependency injection? 

� These two terms are not really opposed to one another as the heading 
suggests.  

� You will come across the term IoC quite often, both in the context of 
dependency injection and outside it. The phrase IoC is rather vague and 
connotes a general reversal of responsibilities how to obtain dependent-
on components. 

� DI is one instance of IoC 

Frameworks and Libraries: Dependency Injection - Dependency injection by hand 
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Terms & Definitions 

� Hollywood Principle: 
� The idea that a dependent is contacted with its dependencies 

� Dependency injector: 
� A framework or library that embodies the Hollywood Principle 

� Dependency injection: 
� The range of concerns with designing applications built on these 

principles 

�  Inversion of Control Containers: 
� DI frameworks are sometimes referred to as IoC containers 

Frameworks and Libraries: Dependency Injection - Dependency injection by hand 
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Kinds of Dependency Injections 

� Constructor Injection: 

� Setter/Method Injection: 
(if method is specified via some interface its called interface injection) 

� Field Injection: 

Frameworks and Libraries: Dependency Injection - Dependency injection by hand 

@Inject void setShortener(Shortener shortener) { 
    this.shortener = shortener; 
} 

@Inject 
public TweetClient(Shortener shortener, Tweeter tweeter) { 
    this.shortener = shortener; 
    this.tweeter = tweeter; 
} 

@Inject Shortener shortener; 
@Inject Tweeter tweeter; 
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6.7 Strengths and Weaknesses of 
Frameworks 

Frameworks and Libraries 
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Benefits of Using Frameworks 

� Modularity  
� volatile implementation details encapsulated behind stable interfaces 
�  improves software quality by localizing the impact of design and 

implementation changes 
�  localization reduces the effort required to understand and maintain 

existing software 

� Reusability 
�  frameworks allow the reuse of domain knowledge, architecture and code 
� Reuse of components enhance quality, performance, reliability and 

interoperability 

Frameworks and Libraries: Strengths and Weaknesses of Frameworks 
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Benefits of Using Frameworks 

� Extensibility 
�  Framework enhances extensibility by providing explicit hook methods. 
� Hook methods systematically decouple the stable interfaces and 

behaviors of an application domain from a particular context. 

�  Inversion of control 
�  IOC leads to reduced coupling between components 
�  Increases testability 

Frameworks and Libraries: Strengths and Weaknesses of Frameworks 
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Weaknesses when using Frameworks 

� Learning curve 
�  it often takes several months become highly productive with a complex 

framework 

�  Integratability 
� Application development will be increasingly based on integration of 

multiple frameworks together with class libraries, legacy systems and 
existing components in one application 

� Maintainability 
� As frameworks evolve, the applications that use them must evolve with 

them … 

� Efficiency  
�  In Terms of memory usage, system performance … 

Frameworks and Libraries: Strengths and Weaknesses of Frameworks 


