
Software Design &
Programming Techniques

Prof. Dr-Ing. Klaus Ostermann

Based on slides by Prof. Dr. Mira Mezini

Frameworks and Libraries

2

Frameworks and Libraries

� 6.1 Frameworks vs. Design Patterns vs. Applications vs. Libraries
� 6.2 Library Design Principles
� 6.3 Customizing Frameworks
� 6.4 Inversion of Control
� 6.5 Dependency Injection
� 6.6 Case Study: Log4J
� 6.7 Strengths and Weaknesses of Frameworks

Chapter Overview

3

6.1 Frameworks vs. Design Patterns vs.
Applications vs. Libraries

Frameworks and Libraries

4

What is an (OO) Framework?

� A set of cooperating classes that makes up a reusable design for a
specific class of software.

� A framework provides architectural guidance by partitioning the design
into abstract classes and defining their responsibilities and
collaborations.

� A developer customizes the framework to a particular application by
subclassing and composing instances of framework classes. That’s why
frameworks are often called semi-complete applications.

� A framework solves problem in a particular problem domain.
See next slide for examples.

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

5

What is a library?

� A set of reusable coherent programming abstractions (classes, methods,
functions, data structures)

�  Focus on black-box reuse
� A library can also be seen (and used as) a domain-specific language

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

6

Libraries vs. Frameworks

� Control flow is dictated by the framework and is the same for all
applications.

� The framework is the main program in coordinating and sequencing
application activity. i.e., it manages the object lifecycle

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

Main
Program

user-supplied
code

library code

Traditional libraries

 Main
Program Framework

user-supplied
 code

Frameworks

7

Libraries vs Frameworks

�  „Traditional“ difference: Who is in charge of the control flow

� However, this difference is only well-defined if one considers libraries that
can only be parameterized by first-order values

�  Libraries that accept higher-order parameters (such as first-class
functions or objects) are quite similar to frameworks
� Similar inversion of control

� Remaining difference: Frameworks are often white-box or grey-box
whereas libraries are more black-box
�  Frameworks can be adapted in more ways, also ways not anticipated by

the framework developer
�  Library developers must anticipate every extension point, but in turn

libraries can be changed more easily without invaliding clients

� No strict discrimination between the two terms possible

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

8

Frameworks vs. Design Patterns

� So what is the difference between both frameworks and design patterns?

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

9

Recap, a Pattern is…
Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

Each pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same

way twice.

- Christopher Alexander

10

A Design Pattern is … (continued)
Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

Design Pattern. A design pattern systematically names,
motivates, and explains a general design that addresses a
recurring design problem in object-oriented systems.

It describes the problem, the solution, when to apply the
solution, and its consequences.

The solution is a general arrangement of objects and classes
that solve the problem.

The solution is customized and implemented to solve the
problem in a particular context.

- GoF

11

Frameworks vs. Design Patterns

� Sounds similar (at least partially), right?
� So again, so what is the difference between a framework and a design

pattern?

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

12

Frameworks vs. Design Patterns

� Patterns are smaller than frameworks.
� A framework contains many patterns (Visitor, Decorator etc.).
� The opposite is not true.

� Patterns are language independent.
� Patterns solve OO language issues (Java, C++, Smalltalk).
�  Frameworks are written in a specific programming language.

� Patterns are more abstract than frameworks.
� Patterns do not solve application domain specific problems.
�  Frameworks provide support for a particular application domain.

Frameworks provide reusable code

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

13

Frameworks vs. Design Patterns

Frameworks describe:
�  the interface of each object and the flow of control between them.
� how the responsibilities are mapped onto its objects

In other words:
� A Framework provides architectural guidance
� by partitioning the design into abstract classes and
� defining their responsibilities and collaborations.

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

The high level design is the main intellectual content of
software, and frameworks are a way to reuse it!

14

Levels of Reuse with Frameworks
Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

Software
Design

Analysis

Reuse

Implementation
Code

15

A Framework is not…

�  ... a design pattern.
� patterns describe ideas and perspectives;
�  frameworks are implemented software.

� … an application.
�  frameworks do not necessarily provide a default behavior,

hence they are not executable programs;
� They can be perceived as a partial design but they do not describe

every aspect of an application.

� … a class library.
� applications that use classes from a library invoke predefined methods,

whereas frameworks invoke predefined methods supplied by the user.
à see section about inversion of control for details…

�  But see earlier discussion about libraries vs. frameworks

Frameworks and Libraries: Frameworks vs. Design Patterns vs. Applications vs. Libraries

16

6.2 Library Design Principles

Frameworks and Libraries

17

Libraries

� The oldest, most common, and most successful way of reusing code
�  Languages are designed to support libraries
� Works together with static typing, import/export mechanisms, separate

compilation, …
�  If you have the choice of achieving your reuse goal with libraries or with

some other mechanism, then libraries are typically the best choice
� Composability with other libraries
� Support by type and module system
�  Information hiding, substitutability, …

� But libraries need a good design to be useful!

Frameworks and Libraries: Library Design Principles

18

Basic Library Design Principles

�  Libraries should be as context-independent as possible
� Every context dependency limits reusability

� Context dependencies (e.g. on other libraries) should be expressed via
interfaces
�  Leaves more freedom to library users

�  Libraries should have a clean, well-defined scope
�  Library should have a well-defined interface
� To make black-box usage possible
�  Interface should be cleanly separated from implementation details
� E.g. via separate packages

�  Library designer has to think about variability points of the library
� Different form of variability
� Parameterization by values
� Parameterization by types
� Parameterization by functions/closures or objects

Frameworks and Libraries: Library Design Principles

19

Issues in Library Design

� Simulating a domain-specific syntax
� Depends on syntactic flexibility of host language
� E.g., possibility to use operators, prefix/infix/postfix notation etc.

� Domain-specific optimizations
� Can be difficult to achieve with traditional libraries
�  Idea of „active library“

Frameworks and Libraries: Library Design Principles

20

6.3 Customizing Frameworks

Frameworks and Libraries

21

Customization Points

� So far, we talked about frameworks being semi-complete applications
that developers need to extend to make them work as application. Thus,
the question arises how one can customize a framework.

� So far we have learned that frameworks have an architecture and a
design that is reused by application developers. Let’s consider following
collection of nodes and links to represent a framework …

Frameworks and Libraries: Customizing Frameworks

22

Simplified Representation of a Framework

� Nodes represent classes, links between nodes represent associations
between classes used for collaboration between classes.

Frameworks and Libraries: Customizing Frameworks

23

Framework Hot Spots

� Since frameworks are incomplete there must be some points in the
design allowing a developer to extend the framework. This extension
points are called hot spots.

Frameworks and Libraries: Customizing Frameworks

Parts of the framework that are
open to extension and

customization are called hot spots

24

� Not all parts of the framework are necessarily designed for being
extensible. These non-extensible spots are called frozen spots.

Framework Frozen Spots
Frameworks and Libraries: Customizing Frameworks

Parts of the framework that are not
open to extension are called cold

or frozen spots

25

How to extend a framework concretely?

� You learned that there are some parts that can be extended and some
can’t. But how do you do that actually?

� The short answer: It depends. Before explaining that, we need to
introduce another classification for frameworks (additionally to the
classification by their application domain).

Frameworks and Libraries: Customizing Frameworks

26

Framework Classification By Extension Technique

Frameworks can (also) be classified by the techniques used to extend
them. We distinguish between three different kinds of frameworks:

Frameworks and Libraries: Customizing Frameworks

27

White-box Frameworks

� White-box frameworks are customized by
subclassing existing framework classes.

� Subclassing requires detailed knowledge:
� Component interfaces of the class.
�  Flow of control in the new component .
� Overriding predefined hook methods à later…

� Learning white-box frameworks is hardest but
most powerful way.

Frameworks and Libraries: Customizing Frameworks

28

Extension Example

� One way is extending a framework base class - maybe this extension
uses the template method pattern.

Frameworks and Libraries: Customizing Frameworks

public class MyWizard extends Wizard {

 @Override
 public void addPages() {
 // TODO Auto-generated method stub
 super.addPages();
 }

 @Override
 public boolean performFinish() {
 // TODO Auto-generated method stub
 return false;
 }
}

29

Black-box Frameworks

� Black-box frameworks are customized using
already existing components.

� Black-box requires less programming:
� Connecting existing components only.
� Writing of new classes is not required.

� Black-box frameworks are less flexible.
� Usability depends on component library.

� Black-box frameworks are easier to learn.

Frameworks and Libraries: Customizing Frameworks

30

Extension Example

�  In black-box frameworks you may observe the same patterns as in white-
box frameworks. But the main difference is: you don’t provide the
implementations for these components – you just reuse them and plug
them together as you need it.

� Technical difference: Object composition (black-box reuse) vs.
subclassing (white/grey/black-box reuse, depending on the subclass
interface description)

Frameworks and Libraries: Customizing Frameworks

Like building a toy
house from Legos

…

31

Grey-box Frameworks

� Grey-box frameworks using both
parameterization and refinement

�  Frameworks typically evolve from white-box to black-box frameworks
over a number of iterations:

� However, it will be hard to find pure black-box frameworks. Typically,
they contain a few white-box elements too.

Frameworks and Libraries: Customizing Frameworks

White-box Black-box

Grey-box

32

6.4 Inversion of Control
Frameworks and Libraries

The

Principle

“Don’t call us –
we call you!”

or …

33

Libraries vs. Frameworks

� Control flow is dictated by the framework and is the same for all
applications.

� The framework is the main program in coordinating and sequencing
application activity. i.e., it manages the object lifecycle

Frameworks and Libraries: Inversion of Control

Main
Program

user-supplied
code

library code

Traditional libraries

 Main
Program Framework

user-supplied
 code

Frameworks

34

Small Example of IoC in Action
Frameworks and Libraries: Inversion of Control

User supplied code Java Collections
Framework

main

list

myComparator

Collections

sort(list, myComparator)

* compare(o1, o2)

Collections.sort(list, new MyComparator());

35

Dependency Inversion in Frameworks

� Dependency Inversion is the most essential principle applied on
frameworks .

Frameworks and Libraries: Inversion of Control

+ sort(List, Comparator)

Collections

+ compare(T, T)
+ equals(Object)

<<interface>>
Comparator<T>

+ compare(T, T)
+ equals(Object)

MyComparator

36

Dependency Inversion in Functional Languages

� Sorting in Haskell:

Dependency Inversion by Higher-Order Function:

sort :: (a -> a -> Bool) -> [a] -> [a]

Example: sort (\x y -> x > y) [3,6,2]

Dependency Inversion with Type Classes

sort :: Ord a => [a] -> [a]

Example:

instance Ord Int where
 a <= b = a > b

sort [3,6,2]

Frameworks and Libraries: Inversion of Control

37

6.5 Dependency Injection
Frameworks and Libraries

38

Motivation

Given:
� We have many components and want to build an application out of

them.
� We can decrease coupling by good OO practices such as programming

against interfaces, registries, etc.
� However, most components collaborate with other components or need

to have access to resources.

Questions:
� How can we minimize the coupling between components, between a

component and the environment, between a component and its required
services?

� How can we improve the reuse potential?
� How can we achieve a better testability of our components?

Frameworks and Libraries: Dependency Injection

39

Developing A tweets client

Steps:
� Setting the stage
� Constructors
�  Factories
� Dependency Injection
� by hand
� with Google Guice

Frameworks and Libraries: Dependency Injection

From a “normal” design to Dependency Injection (DI)

40

 Code you might write
Frameworks and Libraries: Dependency Injection

 public void postButtonClicked() {
 String text = textField.getText();

 if (text.length() > 140) {
 final Shortener shortener = new TinyUrlShortener();
 text = shortener.shorten(text);
 }

 if (text.length() <= 140) {
 final Tweeter tweeter = new SmsTweeter();
 tweeter.send(text);
 textField.setText("");
 }
 }

A tweets client

41

Problems with this solution?

� The TweetClient depends on two components:

� a Shortener (namely, a TinyUrlShortener) for shortening text
messages that are too long, and

� a Transport (namely, a SmsTweeter) that sends the message to, say, a
Twitter server.

� How about testability?

� You may have noticed that the code actually builds its dependencies
immediately, i.e, we call constructors of TinyUrlShortener and
SmsTweeter directly in our code.

� This is really convenient and it is really terse but there’s a lot of
problems with it. Most notably, this code doesn’t lend itself to testing
because of the hardcoded dependencies!

Frameworks and Libraries: Dependency Injection

42

Getting dependencies via their constructors
Frameworks and Libraries: Dependency Injection

 public void postButtonClicked() {
 String text = textField.getText();

 if (text.length() > 140) {
 final Shortener shortener = new TinyUrlShortener();
 text = shortener.shorten(text);
 }

 if (text.length() <= 140) {
 final Tweeter tweeter = new SmsTweeter();
 tweeter.send(text);
 textField.setText("");
 }
 }

...calling new directly doesn’t afford testing

We post to
tinyurl.com and
send an SMS for
each test! This is
neither fast nor
reliable.

43

Getting Dependencies from factories
Frameworks and Libraries: Dependency Injection

 public void postButtonClicked() {
 String text = textField.getText();

 if (text.length() > 140) {
 final Shortener shortener = ShortenerFactory.get();
 text = shortener.shorten(text);
 }

 if (text.length() <= 140) {
 final Tweeter tweeter = TweeterFactory.get();
 tweeter.send(text);
 textField.setText("");
 }
 }

Factories come to
rescue. But they
introduce another
problem …

44

Implementing the factory
Frameworks and Libraries: Dependency Injection

public class TweeterFactory {
 private static Tweeter tweeter;

 public static Tweeter get() {
 if (tweeter == null) {
 tweeter = new SmsTweeter();
 }
 return tweeter;
 }

 public static void setForTesting(Tweeter testTweeter) {
 tweeter = testTweeter;
 }
}

All of this boilerplate slows you down.

We still have to
write a factory
for the URL
shortener…

45

Factory dependence graph
Frameworks and Libraries: Dependency Injection

Design causes a deep net of dependencies...

46

Factory dependency graph
Frameworks and Libraries: Dependency Injection

...design applied recursively

47

Testing your code with factories
Frameworks and Libraries: Dependency Injection

 @Test
 public void testTweet() {

 // setup
 final String message = "Hello!";
 final TweetClient tweetClient = new TweetClient();
 final MockTweeter tweeter = new MockTweeter();
 TweeterFactory.setForTesting(tweeter);
 ...
 // exercise
 tweetClient.getEditor().setText(message);
 tweetClient.postButtonClicked();

 // verify
 assertEquals(message, tweeter.getSent());
}

Using shared mutable factories is error prone…

48

Testing your code with factories
Frameworks and Libraries: Dependency Injection

 @Test
 public void testTweet() {

 // setup
 final String message = "Hello!";
 final TweetClient tweetClient = new TweetClient();
 final MockTweeter tweeter = new MockTweeter();
 TweeterFactory.setForTesting(tweeter);
 ...
 // exercise
 tweetClient.getEditor().setText(message);
 tweetClient.postButtonClicked();

 // verify
 assertEquals(message, tweeter.getSent());

 // teardown
 TweeterFactory.setForTesting(null);
 }

Don’t forget to clear
the playground after
your tests…

49

6.5.1 Dependency injection by hand
Frameworks and Libraries: Dependency Injection

public class TweetClient{

 Shortener shortener;
 Tweeter tweeter;

 public TweetClient(Shortener shortener, Tweeter tweeter) {
 this.shortener = shortener;
 this.tweeter = tweeter;
 }

 public void postButtonClicked() {

 ...

 if (text.length() <= 140) {
 tweeter.send(text);
 textField.setText("");
 }
 }
}

objects come to you

Dependency
Injection: rather than
looking it up, get it
passed in.

50

Testing with dependency injection
Frameworks and Libraries: Dependency Injection - Dependency injection by hand

public void testSendTweet() {

 MockShortener shortener = new MockShortener();

 MockTweeter tweeter = new MockTweeter();

 TweetClient tweetClient

 = new TweetClient(shortener, tweeter);

 tweetClient.getEditor().setText("Hello!");

 tweetClient.postButtonClicked();

 assertEquals("Hello!", tweeter.getSent());

}

no cleanup required…

However, we still have
to provide create the
TweetClient, right?

51

Where does the dependency go?
Frameworks and Libraries: Dependency Injection - Dependency injection by hand

public class TweetClientFactory {

 private static TweetClient testValue;

 public static TweetClient get() {

 if (testValue != null) {
 return testValue;
 }

 Shortener shortener = ShortenerFactory.get();
 Tweeter tweeter = TweeterFactory.get();
 return new TweetClient(shortener, tweeter);
 }
}

DI motto: Push
dependencies from
the core to the edges

52

Where does the dependency go?
Frameworks and Libraries: Dependency Injection - Dependency injection by hand

your application code sheds its heavyweight dependencies

53

Recap

So what are your goals?

� Keep as flexible as possible which components to use at runtime, i.e.,
reduce any hard-coded dependencies in production code.

� Separate the glue code from the component code

� Can be done by hand, or with the help of DI inversion tools such as
Guice

Frameworks and Libraries: Dependency Injection - Dependency injection by hand

54

Dependency Injection with Guice
Frameworks and Libraries: Dependency Injection - Dependency injection by hand

55

Configuring the injector using modules
Frameworks and Libraries: Dependency Injection - Dependency injection by hand

import com.google.inject.AbstractModule;

public class TweetModule extends AbstractModule {

 protected void configure() {
 bind(Tweeter.class).to(SmsTweeter.class);
 bind(Shortener.class).to(TinyUrlShortener.class);
 }
}

56

Telling Guice to use your constructor
Frameworks and Libraries: Dependency Injection - Dependency injection by hand

import com.google.inject.Inject;

public class TweetClient {

 private final Shortener shortener;
 private final Tweeter tweeter;

 @Inject
 public TweetClient(Shortener shortener, Tweeter tweeter) {
 this.shortener = shortener;
 this.tweeter = tweeter;
 }
…

annotate a constructor with @Inject

57

Bootstrapping Guice
Frameworks and Libraries: Dependency Injection - Dependency injection by hand

public static void main(String[] args) {

 Injector injector =
 Guice.createInjector(new TweetModule());

 TweetClient tweetClient =
 injector.getInstance(TweetClient.class);

 tweetClient.show();
}

the DI framework creates
all dependencies for you.

58

Bootstrapping Guice for Testing
Frameworks and Libraries: Dependency Injection - Dependency injection by hand

import com.google.inject.AbstractModule;

public class TweetTestModule extends AbstractModule {

 protected void configure() {
 bind(Tweeter.class).to(MockTweeter.class);
 bind(Shortener.class).to(MockShortener.class);
 }
}

Create a test configuration:

59

Bootstrapping Guice for Testing
Frameworks and Libraries: Dependency Injection - Dependency injection by hand

public void testTweet() {

 Injector injector =
 Guice.createInjector(new TweetTestModule());

 TweetClient tweetClient =
 injector.getInstance(TweetClient.class);

 tweetClient.getEditor().setText("Hello!");
 tweetClient.postButtonClicked();
 assertEquals("Hello!", tweeter.getSent());}

And use it in your tests…

60

Guice Recap

� Helps in separating wiring from component code
� Code becomes short

� There are also disadvantages
�  Loss of static type safety
� What if a more flexible mapping from interfaces to classes is needed?
� E.g., not a global mapping but mapping on a per-case basis?
� Guice offers no support for these cases

� Reflection is slow – this may or may not be a problem

Frameworks and Libraries: Dependency Injection - Dependency injection by hand

61

Inversion of Control vs. dependency injection?

� These two terms are not really opposed to one another as the heading
suggests.

� You will come across the term IoC quite often, both in the context of
dependency injection and outside it. The phrase IoC is rather vague and
connotes a general reversal of responsibilities how to obtain dependent-
on components.

� DI is one instance of IoC

Frameworks and Libraries: Dependency Injection - Dependency injection by hand

62

Terms & Definitions

� Hollywood Principle:
� The idea that a dependent is contacted with its dependencies

� Dependency injector:
� A framework or library that embodies the Hollywood Principle

� Dependency injection:
� The range of concerns with designing applications built on these

principles

�  Inversion of Control Containers:
� DI frameworks are sometimes referred to as IoC containers

Frameworks and Libraries: Dependency Injection - Dependency injection by hand

63

Kinds of Dependency Injections

� Constructor Injection:

� Setter/Method Injection:
(if method is specified via some interface its called interface injection)

� Field Injection:

Frameworks and Libraries: Dependency Injection - Dependency injection by hand

@Inject void setShortener(Shortener shortener) {
 this.shortener = shortener;
}

@Inject
public TweetClient(Shortener shortener, Tweeter tweeter) {
 this.shortener = shortener;
 this.tweeter = tweeter;
}

@Inject Shortener shortener;
@Inject Tweeter tweeter;

71

6.7 Strengths and Weaknesses of
Frameworks

Frameworks and Libraries

72

Benefits of Using Frameworks

� Modularity
� volatile implementation details encapsulated behind stable interfaces
�  improves software quality by localizing the impact of design and

implementation changes
�  localization reduces the effort required to understand and maintain

existing software

� Reusability
�  frameworks allow the reuse of domain knowledge, architecture and code
� Reuse of components enhance quality, performance, reliability and

interoperability

Frameworks and Libraries: Strengths and Weaknesses of Frameworks

73

Benefits of Using Frameworks

� Extensibility
�  Framework enhances extensibility by providing explicit hook methods.
� Hook methods systematically decouple the stable interfaces and

behaviors of an application domain from a particular context.

�  Inversion of control
�  IOC leads to reduced coupling between components
�  Increases testability

Frameworks and Libraries: Strengths and Weaknesses of Frameworks

74

Weaknesses when using Frameworks

� Learning curve
�  it often takes several months become highly productive with a complex

framework

�  Integratability
� Application development will be increasingly based on integration of

multiple frameworks together with class libraries, legacy systems and
existing components in one application

� Maintainability
� As frameworks evolve, the applications that use them must evolve with

them …

� Efficiency
�  In Terms of memory usage, system performance …

Frameworks and Libraries: Strengths and Weaknesses of Frameworks

