Software Design & Programming Techniques

Functional Programming Patterns

Prof. Dr-Ing. Klaus Ostermann

Slides are in part adapted from a talk by Scott Wlaschin

OO design vs FP design 😊

OO pattern/principle

- Single Responsibility Principle
- Open/Closed principle
- Dependency Inversion Principle
- Interface Segregation Principle
- Factory pattern
- Strategy pattern
- Decorator pattern
- Visitor pattern

FP equivalent

- Functions
- Functions
- Functions, also
- Functions
- You will be assimilated!
- Functions again
- Functions
- Resistance is futile!

Functional Design

- ► Core Principles
 - Functions
 - ► Types
 - ► Composition
- Functions as Values
- Monads
- ► Maps
- Monoids and folds

Functions are Values!

Functions are Values!

Functions are "stand alone" and not associated to a class

They are "first class": They are values, just like numbers or strings, and can hence be passed to or returned from other functions

Functions are values!

- ► A small Haskell session...
 - > let x = 1
 > let add1 y = y+1
 Same keyword to bind names for all values, including functions
 Lambda notation
 - > let add1 = $y \rightarrow y+1$
 - > let twice f x = f (f x)
 - > twice add1 x
 3

Higher-Order functions

Composition everywhere!

Composition everywhere!

Can't tell it was built from smaller functions!

Functions scale!

"Functions in the small, objects in the large"?

No. Due to composability, functions can be used on every abstraction level!

Types are not classes

What are types?

- ► Types are "sets" of values
 - (we use quotes around "set" because it may not strictly be a set as defined in set theory)
- If an expression e has type T, then this is a prediction that evaluation of e yields a value that is a member of the "set" T.
- Function types denote mathematical functions (recall that a mathematical function is also a set, namely a relation that is deterministic, ...)
- ▶ In FP, a type describes the structure of the set it denotes
- ▶ In most OO languages, a type is a class name

Nominal vs Structural typing

- ▶ In FP, a type describes the structure of the set it denotes
 - ► Two types are equivalent if they have the same structure
 - This is called "structural typing"
- ▶ In most OO languages, a type is a class name
 - ► Two types are equivalent if they are identical
 - This is called "nominal typing"
- Example: The types A and B are different in Java (a nominal system) class A { int x; int y }
 - class B { int x; int y }
- Example: The types A and B are equivalent in Haskell (a structural system) type A = (Int,Int) type B = (Int,Int)

Composition of Types

- ► Types can be composed, too
- Standard type composition operators: Products and Sums
- Sum types correspond to disjoint unions
- Product types correspond to Cartesian products
- Examples for sum types:
 - **Either** type in Scala or Haskell
 - E.g., type Bool = Either Unit Unit type Maybe a = Either a Unit
- Sum types destructed via pattern matching
- Some languages also feature non-disjoint unions
 - ► Union types in C
 - Not type-safe

Composition of Types

- Examples for Product types
 - ► Tuples : (1,"hi") has type (Int,String)
 - ▶ Records: (x = 5, y = 7) has type (x: Int, y: Int)

Products and Sums together: Algebraic data types

- ► E.g. in Haskell:
- data Color = Red | Green | Blue
- data Point = Point Float Float
- data UniversityPerson = Professor String | Student Int String

Data of unbounded size via recursion

- ► With products and sums, we can only construct data types of fixed size
- ► To have things like lists, we need some form of recursion
- One way: Fixed point operator on the type level

```
data IntListF x = EmptyList | Cons Int x
```

```
type IntList = Fix IntListF
```

- ► More common way: Nominal types with recursion
- ► Algebraic data types allow recursion!

data IntList = EmptyList | Cons Int IntList

Algebraic data types vs. OO classes

- ▶ In OO languages, product types are formed by fields of classes
- Sum types are expressed via subtyping

Example: data IntList = EmptyList | Cons Int IntList

```
can be expressed as
```

abstract class IntList

```
case class EmptyList() extends IntList
case class Cons(x: Int, rest: IntList) extends IntList
```

Important difference: Sum types in FP are usually closed, i.e., nonextensible, whereas sums expressed via subtyping are open

This is related to the "expression problem" we discussed earlier

Datatype-Generic Programming

- Observation: Many standard functions can in principle be derived from the shape of an algebraic data type
 - ► Equality of two types, various traversals, "folds"
- But we need to repeat those definitions for every datatype
- Way out: Datatype-generic programming
- We can't address the topic in detail, see www.cs.ox.ac.uk/jeremy.gibbons/publications/dgp.pdf for a good tutorial
- Common idea: Express datatypes via "polynomial functors"
 - ▶ Functor: Function on the type level that comes with a "map" function
 - Polynomial functor: Type constructors that can show up in the functor restricted to product and sum operators
- E.g., instead of writing data ListF x = EmptyList | Cons Int x we can write type ListF X = 1 + (Int * X) (1 is something like Unit, 0 is something like Nothing)

Polynomial functors

Using polynomial functors, standard data type isomorphisms coincide with standard identities known from basic algebra:

```
1 * 1 = 1

1 + 0 = 0 + 1 = 1

1 * 0 = 0

A * B = B * A

A * (B + C) = A * B + A * C

1 + 1 = 2
```

 Even standard rules for derivation of polynoms can be interpreted in the polynomial functor world

 $F(X) = X * X * X = X^3$

 $F'(X) = 3 * X * X = 3 * X^2 = (X^2 + X^2 + X^2)$

F(X) describes containers with three elements.

F'(X) describes the types of containers with three elements with a "hole": Either the left element is missing, or the middle one, or the right one For more on this topic, consider http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/

FP pattern: Make effects explicit

- "Effect": Things a function does in addition to (or instead of) computing a value
 - ► Example: Non-termination, I/O, Mutation of variables
- ▶ Idea: Type signatures should not "lie"
 - If a function signature promises to map every string to an integer, it should not sometimes return abnormally with an exception
- Example: In FP, an integer parsing function string2int would have a type like: string2int : String -> Maybe Int

instead of

string2int: String -> Int

and sometimes throwing an exception

What's good about explicit effects?

Making effects explicit reduces or eliminates the dependence of the program result on the order of evaluation

Example:

```
val myfunc = try {
  fun (x: String) => if ... then throw SomeException ...
} catch (SomeException e) ...
```

The exception handler won't work if the exception is thrown in a part of the code whose evaluation is deferred, e.g., by being inside a function body

Explicit effects

- Explicit effects are only a "design pattern" in some FP languages; in other languages they are (partially) enforced by the type system
 - ► Haskell, Clean, Idris, ...
 - For instance, Haskell enforces explicit mutation and I/O, but does not enforce termination
 - ► For instance, a Haskell function of type Int -> Int will, given input x
 - Either diverge on x
 - Or return another integer y but not perform any mutation, not print something on the screen, not write something to your harddrive, not communicate on the network
- There are several advanced FP "patterns" for dealing with explicit effects in an elegant way
 - ► Monads, effect types, algebraic effects, ...
 - ► Not in the scope of this lecture

Back to basic FP...

- Meta-Pattern in FP: "We can parameterize/abstract over anything"
- ► Concrete instance of the meta-pattern: Parameterize over functions
- ► Example: FP programmers hate this kind of redundancy

```
public static int Product(int n)
    int product = 1;
    for (int i = 1; i <= n; i++)</pre>
    ł
        product *= i;
    return product;
                                         Don't Repeat Yourself
public static int Sum(int n)
    int sum = 0;
    for (int i = 1; i <= n; i++)
        sum += i;
    return sum;
```

Parameterize all things...

