
FB Informatik, Programmiersprachen und Softwaretechnik

Seminar, WS 2017/18

Extensibility and Modularity  
in Programming Languages

17.10.2017 | Kick-off meeting

2

Introduction

3

Basic research questions 

How can we design and/or use programming languages best to 
extend a program:

 in a safe way (types!)
without modifying existing code

More generally: How can we best group a program into modules
and how can this be supported by the programming language/
system?

INTRODUCTION

4

A little example (Java)

INTRODUCTION

interface Expression {
 int evaluate();
 String prettyPrint();
}
class Literal implements Expression {
 private int i;
 public Literal(int i) { this.i = i; }
 public int evaluate() {
 return i;
 }
 public String prettyPrint() {
 return i+““;
 }
}

5

A little example (Java)

Q: How can I add another kind of expression?

INTRODUCTION

Easy:

6

A little example (Java)

INTRODUCTION

interface Expression {
 int evaluate();
 String prettyPrint();
}
class Literal implements Expression { … }
class Addition implements Expression {
 private Expression e1, e2;
 … /* Constructor omitted */
 public int evaluate() {
 return e1.evaluate() + e2.evaluate();
 }
 public String prettyPrint() {
 return e1.prettyPrint() + ”+” +
 e2.prettyPrint();
 }
}

7

A little example (Java)

Q: How can I add another kind of operation on
expressions?

INTRODUCTION

8

A little example (Java)

This is not quite so easy, though there are a number of
attempts to solve this problem: Visitor pattern, Object algebras, …

(We’ll learn more about them in the course of this seminar.)

However, it is easy to add new operations in
most FP languages, like Haskell.

INTRODUCTION

9

A little example (Haskell)

Q (for those who know Haskell):
How would you realize our little example in
Haskell?

INTRODUCTION

10

A little example (Haskell)

INTRODUCTION

data Expr = Lit Int | Add Expr Expr

eval :: Expr -> Int
eval (Lit i) = i
eval (Add e1 e2) = (eval e1) + (eval e2)

pp :: Expr -> String
pp (Lit i) = show i
pp (Add e1 e2) =
 (show e1) ++ ”+” ++ (show e1)

11

A little example (Haskell)
Adding a new operation is easy:

INTRODUCTION

data Expr = Lit Int | Add Expr Expr

eval :: Expr -> Int
eval (Lit i) = i
eval (Add e1 e2) = (eval e1) + (eval e2)

pp :: Expr -> String
pp (Lit i) = show i
pp (Add e1 e2) =
 (show e1) ++ ”+” ++ (show e1)

depth :: Expr -> Int
depth (Lit i) = 0
depth (Add e1 e2) =
 (maximum [depth e1, depth e2]) + 1

12

A little example (Haskell)

But: It is not so easy to add new variants of
expressions — the situation is quite the
opposite from Java.

Again there are a number of attempts to solve this problem for FP
languages like Haskell: Datatypes à la carte, …

(We’ll learn more about them in the course of this seminar.)

INTRODUCTION

13

Expression Problem

What we saw is the canonical example for what is now called the

Expression Problem (name due to P. Wadler)

 How can we easily extend programs along both of the
extensibility dimensions: with both variants and operations ?

There are many variations on the problem itself and on the
conditions under which we consider it solved: 
type safety, various no-modification conditions, …

In this seminar: We study this matter in depth by reading some
relevant research papers.

INTRODUCTION

14

Organizational matters
Credit Points, Structure, Grading, Time slot

15

Credit Points  

3 ECTS for M.Sc. module INFO4244
4 ECTS under old PO 2010 (as Pflichtseminar)

ORGANIZATIONAL MATTERS

16

Structure of course

Structure: Paper reading group with weekly meetings
Each week: One student is the discussion leader who

• picks a research paper,
• familiarizes himself/herself in depth with its contents,
• prepares for the discussion and questions, and
• during the discussion: leads through the paper and keeps

discussion on track.
The others also read the paper and prepare questions, and

• send these in due time before the meeting to me and the
discussion leader.

At the end of the semester: Each participant writes a term paper
on the topic he prepared for as discussion leader.
• More information on that will follow during the semester.

ORGANIZATIONAL MATTERS

17

Grading

25% Participation as discussion leader
25% Participation in the other meetings
50% Term paper

ORGANIZATIONAL MATTERS

18

Weekly meeting time slot?

Ideally this time slot (Tuesday 16 c.t.-18), but we can try to find a
better one that works for all.

ORGANIZATIONAL MATTERS

19

How to read papers

20

How to read a CS research paper?

Following P.W.L. Fong:  
http://faculty.ksu.edu.sa/chikh/Documents/reading-paper.pdf

When trying to first comprehend the paper, answer these q’s:
• What is the research problem that is addressed?
• What are the claimed contributions?
• How do the author(s) substantiate these claims?
• What are the conclusions? (What have we learned? What are

open problems?)
A paper can be seen as telling a story, and its plot is structured by

these four questions.
To then evaluate the paper, ask these questions:

• Is the research problem significant?
• Are the contributions significant?
• Are the claims valid?

HOW TO READ PAPERS

http://faculty.ksu.edu.sa/chikh/Documents/reading-paper.pdf

21

More information

More general information on reading papers:
http://groups.csail.mit.edu/netmit/wordpress/wp-content/themes/

netmit/papers/HowtoRead.pdf

HOW TO READ PAPERS

http://groups.csail.mit.edu/netmit/wordpress/wp-content/themes/netmit/papers/HowtoRead.pdf

22

Thank you.
Contact:

Julian Jabs
B221
Sand 13, 72076 Tübingen
julian.jabs@uni-tuebingen.de

mailto:julian.jabs@uni-tuebingen.de

