EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Fachbereich Informatik

Programmiersprachen und
Softwaretechnik

Prof. Dr. Klaus Ostermann

Responsible for the lab
Philipp Schuster
philipp.schuster@uni-tuebingen.de

Programmiersprachen li

Homework 2 — WS 18 Tubingen, 25. Oktober 2018

In order to be admitted to the exam, you have to successfully submit your homework every week,
except for 2 weeks. A successful submission is one where you get at least 1 point.

Handin Please submit this homework until Thursday, November 08, either via email to Philipp
Schuster (philipp.schuster@uni-tuebingen.de) before 12:00, or on paper at the beginning of the lab.

Groups You can work in groups of up to 2 people. Please include the names and Matrikelnummern
of all group members in your submission.

Points For each of the Tasks you get between 0 and 2 points for a total of 6 points. You get:
1 point, if your submission shows that you tried to solve the task.
2 points, if your submission is mostly correct.

Task 1: Derivation trees

We define an example language by the following grammar:

(term) ::i= ‘zero’ | ‘'succ’ (term) | ‘false’| ‘true’
| ‘iszero’ (ferm) | 'if’ (term) ‘then’ (ferm) ‘else’ (term)

We define an operational semantics for the language by defining the reduction relation — as the
smallest relation ¢ — ¢/, closed under the following derivation rules:

E-Succ E-ISZERO
-t !E-ISZEROZERO !E-ISZEROSUCC to— 1)
; iszero zero — true iszero(succt) — false - - ;
succty; — succty iszeroty — 1szerot;
E-IFTRUE E-IFFALSE E-IF ot
if true thenty elsety — t9 if false then tg else t3 — t3 L

if t1 thents elsets — if t’l then tg else t3

Which of the rules are computation rules, which of the rules are congruence rules?

Prove that the term succ(succ(iszero(succ zero))) is not in normal form, by giving a derivation tree with
root:

?

succ(succ(iszero(succ zero))) — succ(succ false)

Task 2: Deterministic reduction
The language and its reduction relation from Task 1 is non-deterministic which means that there is
a term ¢ that reduces in one step to two different terms. Show this, by finding ¢, t; and t, such that

t — t1 as well as t — t2. No proof required.
Describe in two sentences an approach for making the reduction relation deterministic.

Task 3: Induction on derivation trees

Let the function size for the language from Task 1 be defined as:

size(zero) =

size(succ tl) = s1ze(t1) +1

size(false) =

size(true) =

size(iszero tl) = size(t1) + 1

size(if t1 then tg else t3) = size(t1) + size(ta) + size(ts) + 1

Show by induction on the possible derivation trees that from ¢ — ¢’ it follows that size(t') < size(t).

Seite 2/2

