

Fachbereich Informatik

Programmiersprachen und Softwaretechnik

Prof. Dr. Klaus Ostermann

Responsible for the lab
Philipp Schuster
philipp.schuster@uni-tuebingen.de

Programmiersprachen II

Homework 2 – WS 18

Tübingen, 25. Oktober 2018

In order to be admitted to the exam, you have to successfully submit your homework every week, except for 2 weeks. A successful submission is one where you get at least 1 point.

Handin Please submit this homework until Thursday, November 08, either via email to Philipp Schuster (philipp.schuster@uni-tuebingen.de) before 12:00, or on paper at the beginning of the lab.

Groups You can work in groups of up to 2 people. Please include the names and Matrikelnummern of all group members in your submission.

Points For each of the Tasks you get between 0 and 2 points for a total of 6 points. You get:

- 1 point, if your submission shows that you tried to solve the task.
- 2 points, if your submission is mostly correct.

Task 1: Derivation trees

We define an example language by the following grammar:

We define an operational semantics for the language by defining the reduction relation \longrightarrow as the smallest relation $t \longrightarrow t'$, closed under the following derivation rules:

Which of the rules are computation rules, which of the rules are congruence rules?

Prove that the term $\operatorname{succ}(\operatorname{succ}(\operatorname{iszero}(\operatorname{succ}\operatorname{zero})))$ is not in normal form, by giving a derivation tree with root:

$$\frac{?}{\operatorname{succ}(\operatorname{succ}(\operatorname{iszero}(\operatorname{succ}\operatorname{zero}))) \longrightarrow \operatorname{succ}(\operatorname{succ}\operatorname{false})}$$

Task 2: Deterministic reduction

The language and its reduction relation from Task 1 is non-deterministic which means that there is a term t that reduces in one step to two different terms. Show this, by finding t, t_1 and t_2 such that $t \longrightarrow t1$ as well as $t \longrightarrow t2$. No proof required.

Describe in two sentences an approach for making the reduction relation deterministic.

Task 3: Induction on derivation trees

Let the function size for the language from Task 1 be defined as:

```
\begin{aligned} &\operatorname{size}(\operatorname{zero}) = 1 \\ &\operatorname{size}(\operatorname{succ} t_1) = \operatorname{size}(t_1) + 1 \\ &\operatorname{size}(\operatorname{false}) = 1 \\ &\operatorname{size}(\operatorname{true}) = 1 \\ &\operatorname{size}(\operatorname{iszero} t_1) = \operatorname{size}(t_1) + 1 \\ &\operatorname{size}(\operatorname{if} t_1 \operatorname{then} t_2 \operatorname{else} t_3) = \operatorname{size}(t_1) + \operatorname{size}(t_2) + \operatorname{size}(t_3) + 1 \end{aligned}
```

Show by induction on the possible derivation trees that from $t \longrightarrow t'$ it follows that size(t') < size(t).