
Fachbereich Informatik

Programmiersprachen und
Softwaretechnik

Prof. Dr. Klaus Ostermann

Responsible for the lab
Philipp Schuster
philipp.schuster@uni-tuebingen.de

Programming Languages 2
Homework 8 – WS 18 Tübingen, 13. Dezember 2018

In order to be admitted to the exam, you have to successfully submit your homework every week,
except for 2 weeks. A successful submission is one where you get at least 1 point.

Handin Please submit this homework until Thursday, December 20, either via email to Philipp
Schuster (philipp.schuster@uni-tuebingen.de) before 12:00, or on paper at the beginning of the lab.

Groups You can work in groups of up to 2 people. Please include the names and Matrikelnummern
of all group members in your submission.

Points For each of the Tasks you get between 0 and 2 points for a total of 6 points. You get:
1 point, if your submission shows that you tried to solve the task.
2 points, if your submission is mostly correct.

Task 1: Join and Meet

Consider the following set of types:

〈type〉 ::= ‘Top’ | 〈type〉 → 〈type〉 | {li : 〈type〉i}

Consider the following rules for the subtyping relation:

S-TOP

` S <: Top

S-ARROW
` T1 <: S1 ` S2 <: T2

` S1 → S2 <: T1 → T2

S-RCD
{li | i ∈ 1..n} ⊆ {kj | j ∈ 1..m} for each kj = li,` Sj <: Ti

` {kj : Sj
j∈1..m} <: {li : Ti

i∈1..n}

For each of the following pairs of types, what is their Join and what is their Meet?

1. {a : Top} and Top

2. {a : Top, b : Top} → ({x : Top} → {z : Top}) and {a : Top} → ({y : Top} → {z : Top})

3. ({a : Top, b : Top} → {x : Top})→ {z : Top} and ({a : Top} → {y : Top})→ {z : Top}

Task 2: Reflexivity of the subtyping relation

Show that for the subtyping relation from Task 1 we have the following property: For all T ∈ type, we
have T <: T .

Task 3: Type checker for a language with subtyping

Implement the algorithmic type checker for the language from the lecture in a programming language
of your choice. Do not try to write a parser but assume a representation of terms in memory. Examples
for a representation of terms and types in Haskell and Java are on the website. Optionally, extend your
implementation with support for an if-then-else construct in which case you would have to compute
Joins and Meets.

Seite 2/2

